Auto-generated API code (#2658)
This commit is contained in:
11
docs/doc_examples/00ad41bde67beac991534ae0e04b1296.asciidoc
Normal file
11
docs/doc_examples/00ad41bde67beac991534ae0e04b1296.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.getDataStream({
|
||||
name: "my-data-stream",
|
||||
filter_path: "data_streams.indices.index_name",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
15
docs/doc_examples/0f028f71f04c1d569fab402869565a84.asciidoc
Normal file
15
docs/doc_examples/0f028f71f04c1d569fab402869565a84.asciidoc
Normal file
@ -0,0 +1,15 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.putSettings({
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
settings: {
|
||||
index: {
|
||||
number_of_replicas: "<original_number_of_replicas>",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
11
docs/doc_examples/12adea5d76f73d94d80d42f53f67563f.asciidoc
Normal file
11
docs/doc_examples/12adea5d76f73d94d80d42f53f67563f.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.addBlock({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
block: "read_only",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
19
docs/doc_examples/1ead35c954963e83f89872048dabdbe9.asciidoc
Normal file
19
docs/doc_examples/1ead35c954963e83f89872048dabdbe9.asciidoc
Normal file
@ -0,0 +1,19 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.queryRole({
|
||||
query: {
|
||||
bool: {
|
||||
must_not: {
|
||||
term: {
|
||||
"metadata._reserved": true,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
sort: ["name"],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
11
docs/doc_examples/272e27bf1fcc4fe5dbd4092679dd0342.asciidoc
Normal file
11
docs/doc_examples/272e27bf1fcc4fe5dbd4092679dd0342.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.addBlock({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
block: "write",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -6,13 +6,13 @@
|
||||
const response = await client.indices.create({
|
||||
index: "test-index",
|
||||
query: {
|
||||
semantic: {
|
||||
field: "my_semantic_field",
|
||||
match: {
|
||||
my_field: "Which country is Paris in?",
|
||||
},
|
||||
},
|
||||
highlight: {
|
||||
fields: {
|
||||
my_semantic_field: {
|
||||
my_field: {
|
||||
type: "semantic",
|
||||
number_of_fragments: 2,
|
||||
order: "score",
|
||||
28
docs/doc_examples/31832bd71c31c46a1ccf8d1c210d89d4.asciidoc
Normal file
28
docs/doc_examples/31832bd71c31c46a1ccf8d1c210d89d4.asciidoc
Normal file
@ -0,0 +1,28 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "my-index-*",
|
||||
query: {
|
||||
bool: {
|
||||
must: [
|
||||
{
|
||||
match: {
|
||||
"user.id": "kimchy",
|
||||
},
|
||||
},
|
||||
],
|
||||
must_not: [
|
||||
{
|
||||
terms: {
|
||||
_index: ["my-index-01"],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
31
docs/doc_examples/32c8c86702ccd68eb70f1573409c2a1f.asciidoc
Normal file
31
docs/doc_examples/32c8c86702ccd68eb70f1573409c2a1f.asciidoc
Normal file
@ -0,0 +1,31 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.ilm.putLifecycle({
|
||||
name: "my_policy",
|
||||
policy: {
|
||||
phases: {
|
||||
hot: {
|
||||
actions: {
|
||||
rollover: {
|
||||
max_primary_shard_size: "50gb",
|
||||
},
|
||||
searchable_snapshot: {
|
||||
snapshot_repository: "backing_repo",
|
||||
replicate_for: "14d",
|
||||
},
|
||||
},
|
||||
},
|
||||
delete: {
|
||||
min_age: "28d",
|
||||
actions: {
|
||||
delete: {},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -9,10 +9,13 @@ const response = await client.search({
|
||||
retriever: {
|
||||
rescorer: {
|
||||
rescore: {
|
||||
window_size: 50,
|
||||
query: {
|
||||
window_size: 50,
|
||||
rescore_query: {
|
||||
script_score: {
|
||||
query: {
|
||||
match_all: {},
|
||||
},
|
||||
script: {
|
||||
source:
|
||||
"cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
|
||||
23
docs/doc_examples/3722dad876023e0757138dd5a6d3240e.asciidoc
Normal file
23
docs/doc_examples/3722dad876023e0757138dd5a6d3240e.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-index",
|
||||
settings: {
|
||||
index: {
|
||||
number_of_shards: 3,
|
||||
"blocks.write": true,
|
||||
},
|
||||
},
|
||||
mappings: {
|
||||
properties: {
|
||||
field1: {
|
||||
type: "text",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
19
docs/doc_examples/3a204b57072a104d9b50f3a9e064a8f6.asciidoc
Normal file
19
docs/doc_examples/3a204b57072a104d9b50f3a9e064a8f6.asciidoc
Normal file
@ -0,0 +1,19 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
size: 0,
|
||||
aggs: {
|
||||
job_ids: {
|
||||
terms: {
|
||||
field: "job_id",
|
||||
size: 100,
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
61
docs/doc_examples/3bc4a3681e3ea9cb3de49f72085807d8.asciidoc
Normal file
61
docs/doc_examples/3bc4a3681e3ea9cb3de49f72085807d8.asciidoc
Normal file
@ -0,0 +1,61 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
linear: {
|
||||
retrievers: [
|
||||
{
|
||||
retriever: {
|
||||
standard: {
|
||||
query: {
|
||||
function_score: {
|
||||
query: {
|
||||
term: {
|
||||
topic: "ai",
|
||||
},
|
||||
},
|
||||
functions: [
|
||||
{
|
||||
script_score: {
|
||||
script: {
|
||||
source: "doc['timestamp'].value.millis",
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
boost_mode: "replace",
|
||||
},
|
||||
},
|
||||
sort: {
|
||||
timestamp: {
|
||||
order: "asc",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
weight: 2,
|
||||
normalizer: "minmax",
|
||||
},
|
||||
{
|
||||
retriever: {
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [0.23, 0.67, 0.89],
|
||||
k: 3,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
weight: 1.5,
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
17
docs/doc_examples/4de4bb55bbc0a76c75d256f245a3ee3f.asciidoc
Normal file
17
docs/doc_examples/4de4bb55bbc0a76c75d256f245a3ee3f.asciidoc
Normal file
@ -0,0 +1,17 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "sparse_embedding",
|
||||
inference_id: "elser-model-eis",
|
||||
inference_config: {
|
||||
service: "elastic",
|
||||
service_settings: {
|
||||
model_name: "elser",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
12
docs/doc_examples/537bce129338d9227bccb6a0283dab45.asciidoc
Normal file
12
docs/doc_examples/537bce129338d9227bccb6a0283dab45.asciidoc
Normal file
@ -0,0 +1,12 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.cluster.putSettings({
|
||||
persistent: {
|
||||
"migrate.data_stream_reindex_max_request_per_second": 10000,
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
10
docs/doc_examples/59aa5216630f80c5dc298fc5bba4a819.asciidoc
Normal file
10
docs/doc_examples/59aa5216630f80c5dc298fc5bba4a819.asciidoc
Normal file
@ -0,0 +1,10 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.getSettings({
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
23
docs/doc_examples/6baf72c04d48cb04c2f8be609ff3b3b5.asciidoc
Normal file
23
docs/doc_examples/6baf72c04d48cb04c2f8be609ff3b3b5.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "test-index",
|
||||
query: {
|
||||
match: {
|
||||
my_semantic_field: "Which country is Paris in?",
|
||||
},
|
||||
},
|
||||
highlight: {
|
||||
fields: {
|
||||
my_semantic_field: {
|
||||
number_of_fragments: 2,
|
||||
order: "score",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
16
docs/doc_examples/6e498b9dc753b94abf2618c407fa5cd8.asciidoc
Normal file
16
docs/doc_examples/6e498b9dc753b94abf2618c407fa5cd8.asciidoc
Normal file
@ -0,0 +1,16 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.reindex({
|
||||
wait_for_completion: "false",
|
||||
source: {
|
||||
index: ".ml-anomalies-custom-example",
|
||||
},
|
||||
dest: {
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
15
docs/doc_examples/8621c05cc7cf3880bde751f6670a0c3a.asciidoc
Normal file
15
docs/doc_examples/8621c05cc7cf3880bde751f6670a0c3a.asciidoc
Normal file
@ -0,0 +1,15 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.putSettings({
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
settings: {
|
||||
index: {
|
||||
number_of_replicas: 0,
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
12
docs/doc_examples/89f547649895176c246bb8c41313ff21.asciidoc
Normal file
12
docs/doc_examples/89f547649895176c246bb8c41313ff21.asciidoc
Normal file
@ -0,0 +1,12 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.query({
|
||||
query:
|
||||
'\nFROM library\n| EVAL year = DATE_EXTRACT("year", release_date)\n| WHERE page_count > ? AND match(author, ?, {"minimum_should_match": ?})\n| LIMIT 5\n',
|
||||
params: [300, "Frank Herbert", 2],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
10
docs/doc_examples/8c47c80139f40f25db44f5781ca2dfbe.asciidoc
Normal file
10
docs/doc_examples/8c47c80139f40f25db44f5781ca2dfbe.asciidoc
Normal file
@ -0,0 +1,10 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.getAlias({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
12
docs/doc_examples/a46f566ca031375658c22f89b87dc6d2.asciidoc
Normal file
12
docs/doc_examples/a46f566ca031375658c22f89b87dc6d2.asciidoc
Normal file
@ -0,0 +1,12 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.cat.indices({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
v: "true",
|
||||
h: "index,store.size",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
12
docs/doc_examples/a675fafa7c688cb3ea1be09bf887ebf0.asciidoc
Normal file
12
docs/doc_examples/a675fafa7c688cb3ea1be09bf887ebf0.asciidoc
Normal file
@ -0,0 +1,12 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.get({
|
||||
index: ".migrated-ds-my-data-stream-2025.01.23-000001",
|
||||
human: "true",
|
||||
filter_path: "*.settings.index.version.created_string",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -6,6 +6,7 @@
|
||||
const response = await client.indices.resolveCluster({
|
||||
name: "not-present,clust*:my-index*,oldcluster:*",
|
||||
ignore_unavailable: "false",
|
||||
timeout: "5s",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -6,15 +6,11 @@
|
||||
const response = await client.update({
|
||||
index: "test",
|
||||
id: 1,
|
||||
script: {
|
||||
source: "ctx._source.counter += params.count",
|
||||
lang: "painless",
|
||||
params: {
|
||||
count: 4,
|
||||
},
|
||||
doc: {
|
||||
product_price: 100,
|
||||
},
|
||||
upsert: {
|
||||
counter: 1,
|
||||
product_price: 50,
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
11
docs/doc_examples/c3b77e11b16e37e9e37e28dec922432e.asciidoc
Normal file
11
docs/doc_examples/c3b77e11b16e37e9e37e28dec922432e.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.query({
|
||||
query:
|
||||
'\nFROM library\n| WHERE match(author, "Frank Herbert", {"minimum_should_match": 2, "operator": "AND"})\n| LIMIT 5\n',
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
11
docs/doc_examples/d2e7dead222cfbebbd2c21a7cc1893b4.asciidoc
Normal file
11
docs/doc_examples/d2e7dead222cfbebbd2c21a7cc1893b4.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.cluster.state({
|
||||
metric: "metadata",
|
||||
filter_path: "metadata.indices.*.system",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
44
docs/doc_examples/d3a0f648d0fd50b54a4e9ebe363c5047.asciidoc
Normal file
44
docs/doc_examples/d3a0f648d0fd50b54a4e9ebe363c5047.asciidoc
Normal file
@ -0,0 +1,44 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
linear: {
|
||||
retrievers: [
|
||||
{
|
||||
retriever: {
|
||||
standard: {
|
||||
query: {
|
||||
query_string: {
|
||||
query: "(information retrieval) OR (artificial intelligence)",
|
||||
default_field: "text",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
weight: 2,
|
||||
normalizer: "minmax",
|
||||
},
|
||||
{
|
||||
retriever: {
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [0.23, 0.67, 0.89],
|
||||
k: 3,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
weight: 1.5,
|
||||
normalizer: "minmax",
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
17
docs/doc_examples/d6a4548b29e939fb197189c20c7c016f.asciidoc
Normal file
17
docs/doc_examples/d6a4548b29e939fb197189c20c7c016f.asciidoc
Normal file
@ -0,0 +1,17 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "chat_completion",
|
||||
inference_id: "chat-completion-endpoint",
|
||||
inference_config: {
|
||||
service: "elastic",
|
||||
service_settings: {
|
||||
model_id: "model-1",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
57
docs/doc_examples/dd16c9c981551c9da47ebb5ef5105fa0.asciidoc
Normal file
57
docs/doc_examples/dd16c9c981551c9da47ebb5ef5105fa0.asciidoc
Normal file
@ -0,0 +1,57 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.updateAliases({
|
||||
actions: [
|
||||
{
|
||||
add: {
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
alias: ".ml-anomalies-example1",
|
||||
filter: {
|
||||
term: {
|
||||
job_id: {
|
||||
value: "example1",
|
||||
},
|
||||
},
|
||||
},
|
||||
is_hidden: true,
|
||||
},
|
||||
},
|
||||
{
|
||||
add: {
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
alias: ".ml-anomalies-example2",
|
||||
filter: {
|
||||
term: {
|
||||
job_id: {
|
||||
value: "example2",
|
||||
},
|
||||
},
|
||||
},
|
||||
is_hidden: true,
|
||||
},
|
||||
},
|
||||
{
|
||||
remove: {
|
||||
index: ".ml-anomalies-custom-example",
|
||||
aliases: ".ml-anomalies-*",
|
||||
},
|
||||
},
|
||||
{
|
||||
remove_index: {
|
||||
index: ".ml-anomalies-custom-example",
|
||||
},
|
||||
},
|
||||
{
|
||||
add: {
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
alias: ".ml-anomalies-custom-example",
|
||||
is_hidden: true,
|
||||
},
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,8 +3,8 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.queryRole({
|
||||
sort: ["name"],
|
||||
const response = await client.migration.deprecations({
|
||||
index: ".ml-anomalies-*",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -30,6 +30,13 @@ const response = await client.search({
|
||||
],
|
||||
},
|
||||
},
|
||||
highlight: {
|
||||
fields: {
|
||||
semantic_text: {
|
||||
number_of_fragments: 2,
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -28,6 +28,9 @@ const response = await client.indices.create({
|
||||
topic: {
|
||||
type: "keyword",
|
||||
},
|
||||
timestamp: {
|
||||
type: "date",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
@ -41,6 +44,7 @@ const response1 = await client.index({
|
||||
text: "Large language models are revolutionizing information retrieval by boosting search precision, deepening contextual understanding, and reshaping user experiences in data-rich environments.",
|
||||
year: 2024,
|
||||
topic: ["llm", "ai", "information_retrieval"],
|
||||
timestamp: "2021-01-01T12:10:30",
|
||||
},
|
||||
});
|
||||
console.log(response1);
|
||||
@ -53,6 +57,7 @@ const response2 = await client.index({
|
||||
text: "Artificial intelligence is transforming medicine, from advancing diagnostics and tailoring treatment plans to empowering predictive patient care for improved health outcomes.",
|
||||
year: 2023,
|
||||
topic: ["ai", "medicine"],
|
||||
timestamp: "2022-01-01T12:10:30",
|
||||
},
|
||||
});
|
||||
console.log(response2);
|
||||
@ -65,6 +70,7 @@ const response3 = await client.index({
|
||||
text: "AI is redefining security by enabling advanced threat detection, proactive risk analysis, and dynamic defenses against increasingly sophisticated cyber threats.",
|
||||
year: 2024,
|
||||
topic: ["ai", "security"],
|
||||
timestamp: "2023-01-01T12:10:30",
|
||||
},
|
||||
});
|
||||
console.log(response3);
|
||||
@ -77,6 +83,7 @@ const response4 = await client.index({
|
||||
text: "Elastic introduces Elastic AI Assistant, the open, generative AI sidekick powered by ESRE to democratize cybersecurity and enable users of every skill level.",
|
||||
year: 2023,
|
||||
topic: ["ai", "elastic", "assistant"],
|
||||
timestamp: "2024-01-01T12:10:30",
|
||||
},
|
||||
});
|
||||
console.log(response4);
|
||||
@ -89,6 +96,7 @@ const response5 = await client.index({
|
||||
text: "Learn how to spin up a deployment of our hosted Elasticsearch Service and use Elastic Observability to gain deeper insight into the behavior of your applications and systems.",
|
||||
year: 2024,
|
||||
topic: ["documentation", "observability", "elastic"],
|
||||
timestamp: "2025-01-01T12:10:30",
|
||||
},
|
||||
});
|
||||
console.log(response5);
|
||||
Reference in New Issue
Block a user