Auto-generated code for 8.15 (#2539)
This commit is contained in:
@ -10,7 +10,7 @@ const response = await client.ingest.putPipeline({
|
|||||||
{
|
{
|
||||||
attachment: {
|
attachment: {
|
||||||
field: "data",
|
field: "data",
|
||||||
remove_binary: false,
|
remove_binary: true,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
35
docs/doc_examples/2a67608dadbf220a2f040f3a79d3677d.asciidoc
Normal file
35
docs/doc_examples/2a67608dadbf220a2f040f3a79d3677d.asciidoc
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
// This file is autogenerated, DO NOT EDIT
|
||||||
|
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||||
|
|
||||||
|
[source, js]
|
||||||
|
----
|
||||||
|
const response = await client.ingest.putPipeline({
|
||||||
|
id: "attachment",
|
||||||
|
description: "Extract attachment information including original binary",
|
||||||
|
processors: [
|
||||||
|
{
|
||||||
|
attachment: {
|
||||||
|
field: "data",
|
||||||
|
remove_binary: false,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
});
|
||||||
|
console.log(response);
|
||||||
|
|
||||||
|
const response1 = await client.index({
|
||||||
|
index: "my-index-000001",
|
||||||
|
id: "my_id",
|
||||||
|
pipeline: "attachment",
|
||||||
|
document: {
|
||||||
|
data: "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0=",
|
||||||
|
},
|
||||||
|
});
|
||||||
|
console.log(response1);
|
||||||
|
|
||||||
|
const response2 = await client.get({
|
||||||
|
index: "my-index-000001",
|
||||||
|
id: "my_id",
|
||||||
|
});
|
||||||
|
console.log(response2);
|
||||||
|
----
|
||||||
@ -10,7 +10,8 @@ const response = await client.inference.put({
|
|||||||
service: "openai",
|
service: "openai",
|
||||||
service_settings: {
|
service_settings: {
|
||||||
api_key: "<api_key>",
|
api_key: "<api_key>",
|
||||||
model_id: "text-embedding-ada-002",
|
model_id: "text-embedding-3-small",
|
||||||
|
dimensions: 128,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
});
|
});
|
||||||
@ -1,17 +0,0 @@
|
|||||||
// This file is autogenerated, DO NOT EDIT
|
|
||||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
|
||||||
|
|
||||||
[source, js]
|
|
||||||
----
|
|
||||||
const response = await client.knnSearch({
|
|
||||||
index: "my-index",
|
|
||||||
knn: {
|
|
||||||
field: "image_vector",
|
|
||||||
query_vector: [0.3, 0.1, 1.2],
|
|
||||||
k: 10,
|
|
||||||
num_candidates: 100,
|
|
||||||
},
|
|
||||||
_source: ["name", "file_type"],
|
|
||||||
});
|
|
||||||
console.log(response);
|
|
||||||
----
|
|
||||||
18
docs/doc_examples/53d9d2ec9cb8d211772d764e76fe6890.asciidoc
Normal file
18
docs/doc_examples/53d9d2ec9cb8d211772d764e76fe6890.asciidoc
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
// This file is autogenerated, DO NOT EDIT
|
||||||
|
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||||
|
|
||||||
|
[source, js]
|
||||||
|
----
|
||||||
|
const response = await client.ingest.simulate({
|
||||||
|
id: "query_helper_pipeline",
|
||||||
|
docs: [
|
||||||
|
{
|
||||||
|
_source: {
|
||||||
|
content:
|
||||||
|
"artificial intelligence in medicine articles published in the last 12 months",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
});
|
||||||
|
console.log(response);
|
||||||
|
----
|
||||||
@ -1,22 +0,0 @@
|
|||||||
// This file is autogenerated, DO NOT EDIT
|
|
||||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
|
||||||
|
|
||||||
[source, js]
|
|
||||||
----
|
|
||||||
const response = await client.indices.create({
|
|
||||||
index: "semantic-embeddings",
|
|
||||||
mappings: {
|
|
||||||
properties: {
|
|
||||||
semantic_text: {
|
|
||||||
type: "semantic_text",
|
|
||||||
inference_id: "my-elser-endpoint",
|
|
||||||
},
|
|
||||||
content: {
|
|
||||||
type: "text",
|
|
||||||
copy_to: "semantic_text",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
});
|
|
||||||
console.log(response);
|
|
||||||
----
|
|
||||||
@ -12,7 +12,7 @@ const response = await client.ingest.putPipeline({
|
|||||||
field: "data",
|
field: "data",
|
||||||
indexed_chars: 11,
|
indexed_chars: 11,
|
||||||
indexed_chars_field: "max_size",
|
indexed_chars_field: "max_size",
|
||||||
remove_binary: false,
|
remove_binary: true,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
@ -1,22 +0,0 @@
|
|||||||
// This file is autogenerated, DO NOT EDIT
|
|
||||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
|
||||||
|
|
||||||
[source, js]
|
|
||||||
----
|
|
||||||
const response = await client.inference.put({
|
|
||||||
task_type: "sparse_embedding",
|
|
||||||
inference_id: "my-elser-endpoint",
|
|
||||||
inference_config: {
|
|
||||||
service: "elser",
|
|
||||||
service_settings: {
|
|
||||||
adaptive_allocations: {
|
|
||||||
enabled: true,
|
|
||||||
min_number_of_allocations: 3,
|
|
||||||
max_number_of_allocations: 10,
|
|
||||||
},
|
|
||||||
num_threads: 1,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
});
|
|
||||||
console.log(response);
|
|
||||||
----
|
|
||||||
32
docs/doc_examples/931817b168e055ecf738785c721125dd.asciidoc
Normal file
32
docs/doc_examples/931817b168e055ecf738785c721125dd.asciidoc
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
// This file is autogenerated, DO NOT EDIT
|
||||||
|
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||||
|
|
||||||
|
[source, js]
|
||||||
|
----
|
||||||
|
const response = await client.ingest.putPipeline({
|
||||||
|
id: "query_helper_pipeline",
|
||||||
|
processors: [
|
||||||
|
{
|
||||||
|
script: {
|
||||||
|
source:
|
||||||
|
"ctx.prompt = 'Please generate an elasticsearch search query on index `articles_index` for the following natural language query. Dates are in the field `@timestamp`, document types are in the field `type` (options are `news`, `publication`), categories in the field `category` and can be multiple (options are `medicine`, `pharmaceuticals`, `technology`), and document names are in the field `title` which should use a fuzzy match. Ignore fields which cannot be determined from the natural language query context: ' + ctx.content",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
inference: {
|
||||||
|
model_id: "openai_chat_completions",
|
||||||
|
input_output: {
|
||||||
|
input_field: "prompt",
|
||||||
|
output_field: "query",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
remove: {
|
||||||
|
field: "prompt",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
});
|
||||||
|
console.log(response);
|
||||||
|
----
|
||||||
@ -9,7 +9,7 @@ const response = await client.indices.create({
|
|||||||
properties: {
|
properties: {
|
||||||
infer_field: {
|
infer_field: {
|
||||||
type: "semantic_text",
|
type: "semantic_text",
|
||||||
inference_id: "my-elser-endpoint",
|
inference_id: ".elser-2-elasticsearch",
|
||||||
},
|
},
|
||||||
source_field: {
|
source_field: {
|
||||||
type: "text",
|
type: "text",
|
||||||
@ -14,7 +14,7 @@ const response = await client.ingest.putPipeline({
|
|||||||
attachment: {
|
attachment: {
|
||||||
target_field: "_ingest._value.attachment",
|
target_field: "_ingest._value.attachment",
|
||||||
field: "_ingest._value.data",
|
field: "_ingest._value.data",
|
||||||
remove_binary: false,
|
remove_binary: true,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
24
docs/doc_examples/d29031409016b2b798148ef173a196ae.asciidoc
Normal file
24
docs/doc_examples/d29031409016b2b798148ef173a196ae.asciidoc
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
// This file is autogenerated, DO NOT EDIT
|
||||||
|
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||||
|
|
||||||
|
[source, js]
|
||||||
|
----
|
||||||
|
const response = await client.indices.create({
|
||||||
|
index: "test-index",
|
||||||
|
query: {
|
||||||
|
semantic: {
|
||||||
|
field: "my_semantic_field",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
highlight: {
|
||||||
|
fields: {
|
||||||
|
my_semantic_field: {
|
||||||
|
type: "semantic",
|
||||||
|
number_of_fragments: 2,
|
||||||
|
order: "score",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
});
|
||||||
|
console.log(response);
|
||||||
|
----
|
||||||
@ -10,7 +10,7 @@ const response = await client.ingest.putPipeline({
|
|||||||
{
|
{
|
||||||
attachment: {
|
attachment: {
|
||||||
field: "data",
|
field: "data",
|
||||||
remove_binary: false,
|
remove_binary: true,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
@ -11,7 +11,7 @@ const response = await client.ingest.putPipeline({
|
|||||||
attachment: {
|
attachment: {
|
||||||
field: "data",
|
field: "data",
|
||||||
properties: ["content", "title"],
|
properties: ["content", "title"],
|
||||||
remove_binary: false,
|
remove_binary: true,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
@ -12,7 +12,7 @@ const response = await client.ingest.putPipeline({
|
|||||||
field: "data",
|
field: "data",
|
||||||
indexed_chars: 11,
|
indexed_chars: 11,
|
||||||
indexed_chars_field: "max_size",
|
indexed_chars_field: "max_size",
|
||||||
remove_binary: false,
|
remove_binary: true,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
Reference in New Issue
Block a user