Auto-generated API code (#2830)
This commit is contained in:
@ -3043,12 +3043,13 @@ client.cat.nodes({ ... })
|
|||||||
** *`bytes` (Optional, Enum("b" | "kb" | "mb" | "gb" | "tb" | "pb"))*: The unit used to display byte values.
|
** *`bytes` (Optional, Enum("b" | "kb" | "mb" | "gb" | "tb" | "pb"))*: The unit used to display byte values.
|
||||||
** *`full_id` (Optional, boolean | string)*: If `true`, return the full node ID. If `false`, return the shortened node ID.
|
** *`full_id` (Optional, boolean | string)*: If `true`, return the full node ID. If `false`, return the shortened node ID.
|
||||||
** *`include_unloaded_segments` (Optional, boolean)*: If true, the response includes information from segments that are not loaded into memory.
|
** *`include_unloaded_segments` (Optional, boolean)*: If true, the response includes information from segments that are not loaded into memory.
|
||||||
** *`h` (Optional, string | string[])*: List of columns to appear in the response. Supports simple wildcards.
|
** *`h` (Optional, Enum("build" | "completion.size" | "cpu" | "disk.avail" | "disk.total" | "disk.used" | "disk.used_percent" | "fielddata.evictions" | "fielddata.memory_size" | "file_desc.current" | "file_desc.max" | "file_desc.percent" | "flush.total" | "flush.total_time" | "get.current" | "get.exists_time" | "get.exists_total" | "get.missing_time" | "get.missing_total" | "get.time" | "get.total" | "heap.current" | "heap.max" | "heap.percent" | "http_address" | "id" | "indexing.delete_current" | "indexing.delete_time" | "indexing.delete_total" | "indexing.index_current" | "indexing.index_failed" | "indexing.index_failed_due_to_version_conflict" | "indexing.index_time" | "indexing.index_total" | "ip" | "jdk" | "load_1m" | "load_5m" | "load_15m" | "mappings.total_count" | "mappings.total_estimated_overhead_in_bytes" | "master" | "merges.current" | "merges.current_docs" | "merges.current_size" | "merges.total" | "merges.total_docs" | "merges.total_size" | "merges.total_time" | "name" | "node.role" | "pid" | "port" | "query_cache.memory_size" | "query_cache.evictions" | "query_cache.hit_count" | "query_cache.miss_count" | "ram.current" | "ram.max" | "ram.percent" | "refresh.total" | "refresh.time" | "request_cache.memory_size" | "request_cache.evictions" | "request_cache.hit_count" | "request_cache.miss_count" | "script.compilations" | "script.cache_evictions" | "search.fetch_current" | "search.fetch_time" | "search.fetch_total" | "search.open_contexts" | "search.query_current" | "search.query_time" | "search.query_total" | "search.scroll_current" | "search.scroll_time" | "search.scroll_total" | "segments.count" | "segments.fixed_bitset_memory" | "segments.index_writer_memory" | "segments.memory" | "segments.version_map_memory" | "shard_stats.total_count" | "suggest.current" | "suggest.time" | "suggest.total" | "uptime" | "version") | Enum("build" | "completion.size" | "cpu" | "disk.avail" | "disk.total" | "disk.used" | "disk.used_percent" | "fielddata.evictions" | "fielddata.memory_size" | "file_desc.current" | "file_desc.max" | "file_desc.percent" | "flush.total" | "flush.total_time" | "get.current" | "get.exists_time" | "get.exists_total" | "get.missing_time" | "get.missing_total" | "get.time" | "get.total" | "heap.current" | "heap.max" | "heap.percent" | "http_address" | "id" | "indexing.delete_current" | "indexing.delete_time" | "indexing.delete_total" | "indexing.index_current" | "indexing.index_failed" | "indexing.index_failed_due_to_version_conflict" | "indexing.index_time" | "indexing.index_total" | "ip" | "jdk" | "load_1m" | "load_5m" | "load_15m" | "mappings.total_count" | "mappings.total_estimated_overhead_in_bytes" | "master" | "merges.current" | "merges.current_docs" | "merges.current_size" | "merges.total" | "merges.total_docs" | "merges.total_size" | "merges.total_time" | "name" | "node.role" | "pid" | "port" | "query_cache.memory_size" | "query_cache.evictions" | "query_cache.hit_count" | "query_cache.miss_count" | "ram.current" | "ram.max" | "ram.percent" | "refresh.total" | "refresh.time" | "request_cache.memory_size" | "request_cache.evictions" | "request_cache.hit_count" | "request_cache.miss_count" | "script.compilations" | "script.cache_evictions" | "search.fetch_current" | "search.fetch_time" | "search.fetch_total" | "search.open_contexts" | "search.query_current" | "search.query_time" | "search.query_total" | "search.scroll_current" | "search.scroll_time" | "search.scroll_total" | "segments.count" | "segments.fixed_bitset_memory" | "segments.index_writer_memory" | "segments.memory" | "segments.version_map_memory" | "shard_stats.total_count" | "suggest.current" | "suggest.time" | "suggest.total" | "uptime" | "version")[])*: A list of columns names to display.
|
||||||
** *`s` (Optional, string | string[])*: List of columns that determine how the table should be sorted.
|
It supports simple wildcards.
|
||||||
|
** *`s` (Optional, string | string[])*: A list of column names or aliases that determines the sort order.
|
||||||
Sorting defaults to ascending and can be changed by setting `:asc`
|
Sorting defaults to ascending and can be changed by setting `:asc`
|
||||||
or `:desc` as a suffix to the column name.
|
or `:desc` as a suffix to the column name.
|
||||||
** *`master_timeout` (Optional, string | -1 | 0)*: Period to wait for a connection to the master node.
|
** *`master_timeout` (Optional, string | -1 | 0)*: The period to wait for a connection to the master node.
|
||||||
** *`time` (Optional, Enum("nanos" | "micros" | "ms" | "s" | "m" | "h" | "d"))*: Unit used to display time values.
|
** *`time` (Optional, Enum("nanos" | "micros" | "ms" | "s" | "m" | "h" | "d"))*: The unit used to display time values.
|
||||||
|
|
||||||
[discrete]
|
[discrete]
|
||||||
==== pending_tasks
|
==== pending_tasks
|
||||||
@ -5784,7 +5785,7 @@ If no index is specified or the index does not have a default analyzer, the anal
|
|||||||
** *`analyzer` (Optional, string)*: The name of the analyzer that should be applied to the provided `text`.
|
** *`analyzer` (Optional, string)*: The name of the analyzer that should be applied to the provided `text`.
|
||||||
This could be a built-in analyzer, or an analyzer that’s been configured in the index.
|
This could be a built-in analyzer, or an analyzer that’s been configured in the index.
|
||||||
** *`attributes` (Optional, string[])*: Array of token attributes used to filter the output of the `explain` parameter.
|
** *`attributes` (Optional, string[])*: Array of token attributes used to filter the output of the `explain` parameter.
|
||||||
** *`char_filter` (Optional, string | { type, escaped_tags } | { type, mappings, mappings_path } | { type, flags, pattern, replacement } | { type, mode, name } | { type, normalize_kana, normalize_kanji }[])*: Array of character filters used to preprocess characters before the tokenizer.
|
** *`char_filter` (Optional, string | { type, escaped_tags } | { type, mappings, mappings_path } | { type, flags, pattern, replacement } | { type, mode, name, unicode_set_filter } | { type, normalize_kana, normalize_kanji }[])*: Array of character filters used to preprocess characters before the tokenizer.
|
||||||
** *`explain` (Optional, boolean)*: If `true`, the response includes token attributes and additional details.
|
** *`explain` (Optional, boolean)*: If `true`, the response includes token attributes and additional details.
|
||||||
** *`field` (Optional, string)*: Field used to derive the analyzer.
|
** *`field` (Optional, string)*: Field used to derive the analyzer.
|
||||||
To use this parameter, you must specify an index.
|
To use this parameter, you must specify an index.
|
||||||
@ -6173,6 +6174,17 @@ client.indices.deleteDataStream({ name })
|
|||||||
** *`master_timeout` (Optional, string | -1 | 0)*: Period to wait for a connection to the master node. If no response is received before the timeout expires, the request fails and returns an error.
|
** *`master_timeout` (Optional, string | -1 | 0)*: Period to wait for a connection to the master node. If no response is received before the timeout expires, the request fails and returns an error.
|
||||||
** *`expand_wildcards` (Optional, Enum("all" | "open" | "closed" | "hidden" | "none") | Enum("all" | "open" | "closed" | "hidden" | "none")[])*: Type of data stream that wildcard patterns can match. Supports a list of values,such as `open,hidden`.
|
** *`expand_wildcards` (Optional, Enum("all" | "open" | "closed" | "hidden" | "none") | Enum("all" | "open" | "closed" | "hidden" | "none")[])*: Type of data stream that wildcard patterns can match. Supports a list of values,such as `open,hidden`.
|
||||||
|
|
||||||
|
[discrete]
|
||||||
|
==== delete_data_stream_options
|
||||||
|
Deletes the data stream options of the selected data streams.
|
||||||
|
|
||||||
|
{ref}/index.html[Endpoint documentation]
|
||||||
|
[source,ts]
|
||||||
|
----
|
||||||
|
client.indices.deleteDataStreamOptions()
|
||||||
|
----
|
||||||
|
|
||||||
|
|
||||||
[discrete]
|
[discrete]
|
||||||
==== delete_index_template
|
==== delete_index_template
|
||||||
Delete an index template.
|
Delete an index template.
|
||||||
@ -6661,6 +6673,17 @@ Supports a list of values, such as `open,hidden`.
|
|||||||
** *`master_timeout` (Optional, string | -1 | 0)*: Period to wait for a connection to the master node. If no response is received before the timeout expires, the request fails and returns an error.
|
** *`master_timeout` (Optional, string | -1 | 0)*: Period to wait for a connection to the master node. If no response is received before the timeout expires, the request fails and returns an error.
|
||||||
** *`verbose` (Optional, boolean)*: Whether the maximum timestamp for each data stream should be calculated and returned.
|
** *`verbose` (Optional, boolean)*: Whether the maximum timestamp for each data stream should be calculated and returned.
|
||||||
|
|
||||||
|
[discrete]
|
||||||
|
==== get_data_stream_options
|
||||||
|
Returns the data stream options of the selected data streams.
|
||||||
|
|
||||||
|
{ref}/index.html[Endpoint documentation]
|
||||||
|
[source,ts]
|
||||||
|
----
|
||||||
|
client.indices.getDataStreamOptions()
|
||||||
|
----
|
||||||
|
|
||||||
|
|
||||||
[discrete]
|
[discrete]
|
||||||
==== get_field_mapping
|
==== get_field_mapping
|
||||||
Get mapping definitions.
|
Get mapping definitions.
|
||||||
@ -7039,6 +7062,17 @@ error.
|
|||||||
** *`timeout` (Optional, string | -1 | 0)*: Period to wait for a response.
|
** *`timeout` (Optional, string | -1 | 0)*: Period to wait for a response.
|
||||||
If no response is received before the timeout expires, the request fails and returns an error.
|
If no response is received before the timeout expires, the request fails and returns an error.
|
||||||
|
|
||||||
|
[discrete]
|
||||||
|
==== put_data_stream_options
|
||||||
|
Updates the data stream options of the selected data streams.
|
||||||
|
|
||||||
|
{ref}/index.html[Endpoint documentation]
|
||||||
|
[source,ts]
|
||||||
|
----
|
||||||
|
client.indices.putDataStreamOptions()
|
||||||
|
----
|
||||||
|
|
||||||
|
|
||||||
[discrete]
|
[discrete]
|
||||||
==== put_index_template
|
==== put_index_template
|
||||||
Create or update an index template.
|
Create or update an index template.
|
||||||
@ -7978,6 +8012,17 @@ Valid values are: `all`, `open`, `closed`, `hidden`, `none`.
|
|||||||
==== chat_completion_unified
|
==== chat_completion_unified
|
||||||
Perform chat completion inference
|
Perform chat completion inference
|
||||||
|
|
||||||
|
The chat completion inference API enables real-time responses for chat completion tasks by delivering answers incrementally, reducing response times during computation.
|
||||||
|
It only works with the `chat_completion` task type for `openai` and `elastic` inference services.
|
||||||
|
|
||||||
|
IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Azure, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face.
|
||||||
|
For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs.
|
||||||
|
|
||||||
|
NOTE: The `chat_completion` task type is only available within the _stream API and only supports streaming.
|
||||||
|
The Chat completion inference API and the Stream inference API differ in their response structure and capabilities.
|
||||||
|
The Chat completion inference API provides more comprehensive customization options through more fields and function calling support.
|
||||||
|
If you use the `openai` service or the `elastic` service, use the Chat completion inference API.
|
||||||
|
|
||||||
{ref}/chat-completion-inference-api.html[Endpoint documentation]
|
{ref}/chat-completion-inference-api.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8087,11 +8132,6 @@ These settings are specific to the task type you specified and override the task
|
|||||||
[discrete]
|
[discrete]
|
||||||
==== put
|
==== put
|
||||||
Create an inference endpoint.
|
Create an inference endpoint.
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face.
|
IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face.
|
||||||
For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models.
|
For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models.
|
||||||
@ -8117,12 +8157,6 @@ Create an AlibabaCloud AI Search inference endpoint.
|
|||||||
|
|
||||||
Create an inference endpoint to perform an inference task with the `alibabacloud-ai-search` service.
|
Create an inference endpoint to perform an inference task with the `alibabacloud-ai-search` service.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-alibabacloud-ai-search.html[Endpoint documentation]
|
{ref}/infer-service-alibabacloud-ai-search.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8150,12 +8184,6 @@ Creates an inference endpoint to perform an inference task with the `amazonbedro
|
|||||||
>info
|
>info
|
||||||
> You need to provide the access and secret keys only once, during the inference model creation. The get inference API does not retrieve your access or secret keys. After creating the inference model, you cannot change the associated key pairs. If you want to use a different access and secret key pair, delete the inference model and recreate it with the same name and the updated keys.
|
> You need to provide the access and secret keys only once, during the inference model creation. The get inference API does not retrieve your access or secret keys. After creating the inference model, you cannot change the associated key pairs. If you want to use a different access and secret key pair, delete the inference model and recreate it with the same name and the updated keys.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-amazon-bedrock.html[Endpoint documentation]
|
{ref}/infer-service-amazon-bedrock.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8180,12 +8208,6 @@ Create an Anthropic inference endpoint.
|
|||||||
|
|
||||||
Create an inference endpoint to perform an inference task with the `anthropic` service.
|
Create an inference endpoint to perform an inference task with the `anthropic` service.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-anthropic.html[Endpoint documentation]
|
{ref}/infer-service-anthropic.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8211,12 +8233,6 @@ Create an Azure AI studio inference endpoint.
|
|||||||
|
|
||||||
Create an inference endpoint to perform an inference task with the `azureaistudio` service.
|
Create an inference endpoint to perform an inference task with the `azureaistudio` service.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-azure-ai-studio.html[Endpoint documentation]
|
{ref}/infer-service-azure-ai-studio.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8248,12 +8264,6 @@ The list of chat completion models that you can choose from in your Azure OpenAI
|
|||||||
|
|
||||||
The list of embeddings models that you can choose from in your deployment can be found in the [Azure models documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#embeddings).
|
The list of embeddings models that you can choose from in your deployment can be found in the [Azure models documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#embeddings).
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-azure-openai.html[Endpoint documentation]
|
{ref}/infer-service-azure-openai.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8279,12 +8289,6 @@ Create a Cohere inference endpoint.
|
|||||||
|
|
||||||
Create an inference endpoint to perform an inference task with the `cohere` service.
|
Create an inference endpoint to perform an inference task with the `cohere` service.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-cohere.html[Endpoint documentation]
|
{ref}/infer-service-cohere.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8384,12 +8388,6 @@ Create an Google AI Studio inference endpoint.
|
|||||||
|
|
||||||
Create an inference endpoint to perform an inference task with the `googleaistudio` service.
|
Create an inference endpoint to perform an inference task with the `googleaistudio` service.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-google-ai-studio.html[Endpoint documentation]
|
{ref}/infer-service-google-ai-studio.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8412,12 +8410,6 @@ Create a Google Vertex AI inference endpoint.
|
|||||||
|
|
||||||
Create an inference endpoint to perform an inference task with the `googlevertexai` service.
|
Create an inference endpoint to perform an inference task with the `googlevertexai` service.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-google-vertex-ai.html[Endpoint documentation]
|
{ref}/infer-service-google-vertex-ai.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8456,12 +8448,6 @@ The following models are recommended for the Hugging Face service:
|
|||||||
* `multilingual-e5-base`
|
* `multilingual-e5-base`
|
||||||
* `multilingual-e5-small`
|
* `multilingual-e5-small`
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-hugging-face.html[Endpoint documentation]
|
{ref}/infer-service-hugging-face.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8487,12 +8473,6 @@ Create an inference endpoint to perform an inference task with the `jinaai` serv
|
|||||||
To review the available `rerank` models, refer to <https://jina.ai/reranker>.
|
To review the available `rerank` models, refer to <https://jina.ai/reranker>.
|
||||||
To review the available `text_embedding` models, refer to the <https://jina.ai/embeddings/>.
|
To review the available `text_embedding` models, refer to the <https://jina.ai/embeddings/>.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-jinaai.html[Endpoint documentation]
|
{ref}/infer-service-jinaai.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8517,12 +8497,6 @@ Create a Mistral inference endpoint.
|
|||||||
|
|
||||||
Creates an inference endpoint to perform an inference task with the `mistral` service.
|
Creates an inference endpoint to perform an inference task with the `mistral` service.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-mistral.html[Endpoint documentation]
|
{ref}/infer-service-mistral.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8546,12 +8520,6 @@ Create an OpenAI inference endpoint.
|
|||||||
|
|
||||||
Create an inference endpoint to perform an inference task with the `openai` service or `openai` compatible APIs.
|
Create an inference endpoint to perform an inference task with the `openai` service or `openai` compatible APIs.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-openai.html[Endpoint documentation]
|
{ref}/infer-service-openai.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
@ -8605,12 +8573,6 @@ Create an inference endpoint to perform an inference task with the `watsonxai` s
|
|||||||
You need an IBM Cloud Databases for Elasticsearch deployment to use the `watsonxai` inference service.
|
You need an IBM Cloud Databases for Elasticsearch deployment to use the `watsonxai` inference service.
|
||||||
You can provision one through the IBM catalog, the Cloud Databases CLI plug-in, the Cloud Databases API, or Terraform.
|
You can provision one through the IBM catalog, the Cloud Databases CLI plug-in, the Cloud Databases API, or Terraform.
|
||||||
|
|
||||||
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
|
|
||||||
After creating the endpoint, wait for the model deployment to complete before using it.
|
|
||||||
To verify the deployment status, use the get trained model statistics API.
|
|
||||||
Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`.
|
|
||||||
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
|
||||||
|
|
||||||
{ref}/infer-service-watsonx-ai.html[Endpoint documentation]
|
{ref}/infer-service-watsonx-ai.html[Endpoint documentation]
|
||||||
[source,ts]
|
[source,ts]
|
||||||
----
|
----
|
||||||
|
|||||||
@ -45,7 +45,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Perform chat completion inference
|
* Perform chat completion inference The chat completion inference API enables real-time responses for chat completion tasks by delivering answers incrementally, reducing response times during computation. It only works with the `chat_completion` task type for `openai` and `elastic` inference services. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Azure, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. NOTE: The `chat_completion` task type is only available within the _stream API and only supports streaming. The Chat completion inference API and the Stream inference API differ in their response structure and capabilities. The Chat completion inference API provides more comprehensive customization options through more fields and function calling support. If you use the `openai` service or the `elastic` service, use the Chat completion inference API.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/chat-completion-inference-api.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/chat-completion-inference-api.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async chatCompletionUnified (this: That, params: T.InferenceChatCompletionUnifiedRequest | TB.InferenceChatCompletionUnifiedRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferenceChatCompletionUnifiedResponse>
|
async chatCompletionUnified (this: That, params: T.InferenceChatCompletionUnifiedRequest | TB.InferenceChatCompletionUnifiedRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferenceChatCompletionUnifiedResponse>
|
||||||
@ -262,7 +262,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an inference endpoint. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs.
|
* Create an inference endpoint. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/put-inference-api.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/put-inference-api.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async put (this: That, params: T.InferencePutRequest | TB.InferencePutRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutResponse>
|
async put (this: That, params: T.InferencePutRequest | TB.InferencePutRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutResponse>
|
||||||
@ -307,7 +307,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an AlibabaCloud AI Search inference endpoint. Create an inference endpoint to perform an inference task with the `alibabacloud-ai-search` service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an AlibabaCloud AI Search inference endpoint. Create an inference endpoint to perform an inference task with the `alibabacloud-ai-search` service.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-alibabacloud-ai-search.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-alibabacloud-ai-search.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putAlibabacloud (this: That, params: T.InferencePutAlibabacloudRequest | TB.InferencePutAlibabacloudRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAlibabacloudResponse>
|
async putAlibabacloud (this: That, params: T.InferencePutAlibabacloudRequest | TB.InferencePutAlibabacloudRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAlibabacloudResponse>
|
||||||
@ -352,7 +352,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an Amazon Bedrock inference endpoint. Creates an inference endpoint to perform an inference task with the `amazonbedrock` service. >info > You need to provide the access and secret keys only once, during the inference model creation. The get inference API does not retrieve your access or secret keys. After creating the inference model, you cannot change the associated key pairs. If you want to use a different access and secret key pair, delete the inference model and recreate it with the same name and the updated keys. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an Amazon Bedrock inference endpoint. Creates an inference endpoint to perform an inference task with the `amazonbedrock` service. >info > You need to provide the access and secret keys only once, during the inference model creation. The get inference API does not retrieve your access or secret keys. After creating the inference model, you cannot change the associated key pairs. If you want to use a different access and secret key pair, delete the inference model and recreate it with the same name and the updated keys.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-amazon-bedrock.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-amazon-bedrock.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putAmazonbedrock (this: That, params: T.InferencePutAmazonbedrockRequest | TB.InferencePutAmazonbedrockRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAmazonbedrockResponse>
|
async putAmazonbedrock (this: That, params: T.InferencePutAmazonbedrockRequest | TB.InferencePutAmazonbedrockRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAmazonbedrockResponse>
|
||||||
@ -397,7 +397,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an Anthropic inference endpoint. Create an inference endpoint to perform an inference task with the `anthropic` service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an Anthropic inference endpoint. Create an inference endpoint to perform an inference task with the `anthropic` service.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-anthropic.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-anthropic.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putAnthropic (this: That, params: T.InferencePutAnthropicRequest | TB.InferencePutAnthropicRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAnthropicResponse>
|
async putAnthropic (this: That, params: T.InferencePutAnthropicRequest | TB.InferencePutAnthropicRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAnthropicResponse>
|
||||||
@ -442,7 +442,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an Azure AI studio inference endpoint. Create an inference endpoint to perform an inference task with the `azureaistudio` service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an Azure AI studio inference endpoint. Create an inference endpoint to perform an inference task with the `azureaistudio` service.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-azure-ai-studio.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-azure-ai-studio.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putAzureaistudio (this: That, params: T.InferencePutAzureaistudioRequest | TB.InferencePutAzureaistudioRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAzureaistudioResponse>
|
async putAzureaistudio (this: That, params: T.InferencePutAzureaistudioRequest | TB.InferencePutAzureaistudioRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAzureaistudioResponse>
|
||||||
@ -487,7 +487,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an Azure OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the `azureopenai` service. The list of chat completion models that you can choose from in your Azure OpenAI deployment include: * [GPT-4 and GPT-4 Turbo models](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#gpt-4-and-gpt-4-turbo-models) * [GPT-3.5](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#gpt-35) The list of embeddings models that you can choose from in your deployment can be found in the [Azure models documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#embeddings). When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an Azure OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the `azureopenai` service. The list of chat completion models that you can choose from in your Azure OpenAI deployment include: * [GPT-4 and GPT-4 Turbo models](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#gpt-4-and-gpt-4-turbo-models) * [GPT-3.5](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#gpt-35) The list of embeddings models that you can choose from in your deployment can be found in the [Azure models documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=global-standard%2Cstandard-chat-completions#embeddings).
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-azure-openai.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-azure-openai.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putAzureopenai (this: That, params: T.InferencePutAzureopenaiRequest | TB.InferencePutAzureopenaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAzureopenaiResponse>
|
async putAzureopenai (this: That, params: T.InferencePutAzureopenaiRequest | TB.InferencePutAzureopenaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutAzureopenaiResponse>
|
||||||
@ -532,7 +532,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a Cohere inference endpoint. Create an inference endpoint to perform an inference task with the `cohere` service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create a Cohere inference endpoint. Create an inference endpoint to perform an inference task with the `cohere` service.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-cohere.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-cohere.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putCohere (this: That, params: T.InferencePutCohereRequest | TB.InferencePutCohereRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutCohereResponse>
|
async putCohere (this: That, params: T.InferencePutCohereRequest | TB.InferencePutCohereRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutCohereResponse>
|
||||||
@ -667,7 +667,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an Google AI Studio inference endpoint. Create an inference endpoint to perform an inference task with the `googleaistudio` service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an Google AI Studio inference endpoint. Create an inference endpoint to perform an inference task with the `googleaistudio` service.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-google-ai-studio.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-google-ai-studio.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putGoogleaistudio (this: That, params: T.InferencePutGoogleaistudioRequest | TB.InferencePutGoogleaistudioRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutGoogleaistudioResponse>
|
async putGoogleaistudio (this: That, params: T.InferencePutGoogleaistudioRequest | TB.InferencePutGoogleaistudioRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutGoogleaistudioResponse>
|
||||||
@ -712,7 +712,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a Google Vertex AI inference endpoint. Create an inference endpoint to perform an inference task with the `googlevertexai` service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create a Google Vertex AI inference endpoint. Create an inference endpoint to perform an inference task with the `googlevertexai` service.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-google-vertex-ai.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-google-vertex-ai.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putGooglevertexai (this: That, params: T.InferencePutGooglevertexaiRequest | TB.InferencePutGooglevertexaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutGooglevertexaiResponse>
|
async putGooglevertexai (this: That, params: T.InferencePutGooglevertexaiRequest | TB.InferencePutGooglevertexaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutGooglevertexaiResponse>
|
||||||
@ -757,7 +757,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a Hugging Face inference endpoint. Create an inference endpoint to perform an inference task with the `hugging_face` service. You must first create an inference endpoint on the Hugging Face endpoint page to get an endpoint URL. Select the model you want to use on the new endpoint creation page (for example `intfloat/e5-small-v2`), then select the sentence embeddings task under the advanced configuration section. Create the endpoint and copy the URL after the endpoint initialization has been finished. The following models are recommended for the Hugging Face service: * `all-MiniLM-L6-v2` * `all-MiniLM-L12-v2` * `all-mpnet-base-v2` * `e5-base-v2` * `e5-small-v2` * `multilingual-e5-base` * `multilingual-e5-small` When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create a Hugging Face inference endpoint. Create an inference endpoint to perform an inference task with the `hugging_face` service. You must first create an inference endpoint on the Hugging Face endpoint page to get an endpoint URL. Select the model you want to use on the new endpoint creation page (for example `intfloat/e5-small-v2`), then select the sentence embeddings task under the advanced configuration section. Create the endpoint and copy the URL after the endpoint initialization has been finished. The following models are recommended for the Hugging Face service: * `all-MiniLM-L6-v2` * `all-MiniLM-L12-v2` * `all-mpnet-base-v2` * `e5-base-v2` * `e5-small-v2` * `multilingual-e5-base` * `multilingual-e5-small`
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-hugging-face.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-hugging-face.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putHuggingFace (this: That, params: T.InferencePutHuggingFaceRequest | TB.InferencePutHuggingFaceRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutHuggingFaceResponse>
|
async putHuggingFace (this: That, params: T.InferencePutHuggingFaceRequest | TB.InferencePutHuggingFaceRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutHuggingFaceResponse>
|
||||||
@ -802,7 +802,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an JinaAI inference endpoint. Create an inference endpoint to perform an inference task with the `jinaai` service. To review the available `rerank` models, refer to <https://jina.ai/reranker>. To review the available `text_embedding` models, refer to the <https://jina.ai/embeddings/>. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an JinaAI inference endpoint. Create an inference endpoint to perform an inference task with the `jinaai` service. To review the available `rerank` models, refer to <https://jina.ai/reranker>. To review the available `text_embedding` models, refer to the <https://jina.ai/embeddings/>.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-jinaai.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-jinaai.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putJinaai (this: That, params: T.InferencePutJinaaiRequest | TB.InferencePutJinaaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutJinaaiResponse>
|
async putJinaai (this: That, params: T.InferencePutJinaaiRequest | TB.InferencePutJinaaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutJinaaiResponse>
|
||||||
@ -847,7 +847,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a Mistral inference endpoint. Creates an inference endpoint to perform an inference task with the `mistral` service. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create a Mistral inference endpoint. Creates an inference endpoint to perform an inference task with the `mistral` service.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-mistral.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-mistral.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putMistral (this: That, params: T.InferencePutMistralRequest | TB.InferencePutMistralRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutMistralResponse>
|
async putMistral (this: That, params: T.InferencePutMistralRequest | TB.InferencePutMistralRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutMistralResponse>
|
||||||
@ -892,7 +892,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create an OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the `openai` service or `openai` compatible APIs. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create an OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the `openai` service or `openai` compatible APIs.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-openai.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-openai.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putOpenai (this: That, params: T.InferencePutOpenaiRequest | TB.InferencePutOpenaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutOpenaiResponse>
|
async putOpenai (this: That, params: T.InferencePutOpenaiRequest | TB.InferencePutOpenaiRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutOpenaiResponse>
|
||||||
@ -982,7 +982,7 @@ export default class Inference {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Create a Watsonx inference endpoint. Create an inference endpoint to perform an inference task with the `watsonxai` service. You need an IBM Cloud Databases for Elasticsearch deployment to use the `watsonxai` inference service. You can provision one through the IBM catalog, the Cloud Databases CLI plug-in, the Cloud Databases API, or Terraform. When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. After creating the endpoint, wait for the model deployment to complete before using it. To verify the deployment status, use the get trained model statistics API. Look for `"state": "fully_allocated"` in the response and ensure that the `"allocation_count"` matches the `"target_allocation_count"`. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
|
* Create a Watsonx inference endpoint. Create an inference endpoint to perform an inference task with the `watsonxai` service. You need an IBM Cloud Databases for Elasticsearch deployment to use the `watsonxai` inference service. You can provision one through the IBM catalog, the Cloud Databases CLI plug-in, the Cloud Databases API, or Terraform.
|
||||||
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-watsonx-ai.html | Elasticsearch API documentation}
|
* @see {@link https://www.elastic.co/guide/en/elasticsearch/reference/8.19/infer-service-watsonx-ai.html | Elasticsearch API documentation}
|
||||||
*/
|
*/
|
||||||
async putWatsonx (this: That, params: T.InferencePutWatsonxRequest | TB.InferencePutWatsonxRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutWatsonxResponse>
|
async putWatsonx (this: That, params: T.InferencePutWatsonxRequest | TB.InferencePutWatsonxRequest, options?: TransportRequestOptionsWithOutMeta): Promise<T.InferencePutWatsonxResponse>
|
||||||
|
|||||||
@ -4752,6 +4752,7 @@ export interface AnalysisIcuNormalizationCharFilter extends AnalysisCharFilterBa
|
|||||||
type: 'icu_normalizer'
|
type: 'icu_normalizer'
|
||||||
mode?: AnalysisIcuNormalizationMode
|
mode?: AnalysisIcuNormalizationMode
|
||||||
name?: AnalysisIcuNormalizationType
|
name?: AnalysisIcuNormalizationType
|
||||||
|
unicode_set_filter?: string
|
||||||
}
|
}
|
||||||
|
|
||||||
export type AnalysisIcuNormalizationMode = 'decompose' | 'compose'
|
export type AnalysisIcuNormalizationMode = 'decompose' | 'compose'
|
||||||
@ -6952,6 +6953,10 @@ export type CatCatDfaColumn = 'assignment_explanation' | 'ae' | 'create_time' |
|
|||||||
|
|
||||||
export type CatCatDfaColumns = CatCatDfaColumn | CatCatDfaColumn[]
|
export type CatCatDfaColumns = CatCatDfaColumn | CatCatDfaColumn[]
|
||||||
|
|
||||||
|
export type CatCatNodeColumn = 'build' | 'b' | 'completion.size' | 'cs' | 'completionSize' | 'cpu' | 'disk.avail' | 'd' | 'disk' | 'diskAvail' | 'disk.total' | 'dt' | 'diskTotal' | 'disk.used' | 'du' | 'diskUsed' | 'disk.used_percent' | 'dup' | 'diskUsedPercent' | 'fielddata.evictions' | 'fe' | 'fielddataEvictions' | 'fielddata.memory_size' | 'fm' | 'fielddataMemory' | 'file_desc.current' | 'fdc' | 'fileDescriptorCurrent' | 'file_desc.max' | 'fdm' | 'fileDescriptorMax' | 'file_desc.percent' | 'fdp' | 'fileDescriptorPercent' | 'flush.total' | 'ft' | 'flushTotal' | 'flush.total_time' | 'ftt' | 'flushTotalTime' | 'get.current' | 'gc' | 'getCurrent' | 'get.exists_time' | 'geti' | 'getExistsTime' | 'get.exists_total' | 'geto' | 'getExistsTotal' | 'get.missing_time' | 'gmti' | 'getMissingTime' | 'get.missing_total' | 'gmto' | 'getMissingTotal' | 'get.time' | 'gti' | 'getTime' | 'get.total' | 'gto' | 'getTotal' | 'heap.current' | 'hc' | 'heapCurrent' | 'heap.max' | 'hm' | 'heapMax' | 'heap.percent' | 'hp' | 'heapPercent' | 'http_address' | 'http' | 'id' | 'nodeId' | 'indexing.delete_current' | 'idc' | 'indexingDeleteCurrent' | 'indexing.delete_time' | 'idti' | 'indexingDeleteTime' | 'indexing.delete_total' | 'idto' | 'indexingDeleteTotal' | 'indexing.index_current' | 'iic' | 'indexingIndexCurrent' | 'indexing.index_failed' | 'iif' | 'indexingIndexFailed' | 'indexing.index_failed_due_to_version_conflict' | 'iifvc' | 'indexingIndexFailedDueToVersionConflict' | 'indexing.index_time' | 'iiti' | 'indexingIndexTime' | 'indexing.index_total' | 'iito' | 'indexingIndexTotal' | 'ip' | 'i' | 'jdk' | 'j' | 'load_1m' | 'l' | 'load_5m' | 'l' | 'load_15m' | 'l' | 'mappings.total_count' | 'mtc' | 'mappingsTotalCount' | 'mappings.total_estimated_overhead_in_bytes' | 'mteo' | 'mappingsTotalEstimatedOverheadInBytes' | 'master' | 'm' | 'merges.current' | 'mc' | 'mergesCurrent' | 'merges.current_docs' | 'mcd' | 'mergesCurrentDocs' | 'merges.current_size' | 'mcs' | 'mergesCurrentSize' | 'merges.total' | 'mt' | 'mergesTotal' | 'merges.total_docs' | 'mtd' | 'mergesTotalDocs' | 'merges.total_size' | 'mts' | 'mergesTotalSize' | 'merges.total_time' | 'mtt' | 'mergesTotalTime' | 'name' | 'n' | 'node.role' | 'r' | 'role' | 'nodeRole' | 'pid' | 'p' | 'port' | 'po' | 'query_cache.memory_size' | 'qcm' | 'queryCacheMemory' | 'query_cache.evictions' | 'qce' | 'queryCacheEvictions' | 'query_cache.hit_count' | 'qchc' | 'queryCacheHitCount' | 'query_cache.miss_count' | 'qcmc' | 'queryCacheMissCount' | 'ram.current' | 'rc' | 'ramCurrent' | 'ram.max' | 'rm' | 'ramMax' | 'ram.percent' | 'rp' | 'ramPercent' | 'refresh.total' | 'rto' | 'refreshTotal' | 'refresh.time' | 'rti' | 'refreshTime' | 'request_cache.memory_size' | 'rcm' | 'requestCacheMemory' | 'request_cache.evictions' | 'rce' | 'requestCacheEvictions' | 'request_cache.hit_count' | 'rchc' | 'requestCacheHitCount' | 'request_cache.miss_count' | 'rcmc' | 'requestCacheMissCount' | 'script.compilations' | 'scrcc' | 'scriptCompilations' | 'script.cache_evictions' | 'scrce' | 'scriptCacheEvictions' | 'search.fetch_current' | 'sfc' | 'searchFetchCurrent' | 'search.fetch_time' | 'sfti' | 'searchFetchTime' | 'search.fetch_total' | 'sfto' | 'searchFetchTotal' | 'search.open_contexts' | 'so' | 'searchOpenContexts' | 'search.query_current' | 'sqc' | 'searchQueryCurrent' | 'search.query_time' | 'sqti' | 'searchQueryTime' | 'search.query_total' | 'sqto' | 'searchQueryTotal' | 'search.scroll_current' | 'scc' | 'searchScrollCurrent' | 'search.scroll_time' | 'scti' | 'searchScrollTime' | 'search.scroll_total' | 'scto' | 'searchScrollTotal' | 'segments.count' | 'sc' | 'segmentsCount' | 'segments.fixed_bitset_memory' | 'sfbm' | 'fixedBitsetMemory' | 'segments.index_writer_memory' | 'siwm' | 'segmentsIndexWriterMemory' | 'segments.memory' | 'sm' | 'segmentsMemory' | 'segments.version_map_memory' | 'svmm' | 'segmentsVersionMapMemory' | 'shard_stats.total_count' | 'sstc' | 'shards' | 'shardStatsTotalCount' | 'suggest.current' | 'suc' | 'suggestCurrent' | 'suggest.time' | 'suti' | 'suggestTime' | 'suggest.total' | 'suto' | 'suggestTotal' | 'uptime' | 'u' | 'version' | 'v' | string
|
||||||
|
|
||||||
|
export type CatCatNodeColumns = CatCatNodeColumn | CatCatNodeColumn[]
|
||||||
|
|
||||||
export interface CatCatRequestBase extends RequestBase, SpecUtilsCommonCatQueryParameters {
|
export interface CatCatRequestBase extends RequestBase, SpecUtilsCommonCatQueryParameters {
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -8142,7 +8147,7 @@ export interface CatNodesRequest extends CatCatRequestBase {
|
|||||||
bytes?: Bytes
|
bytes?: Bytes
|
||||||
full_id?: boolean | string
|
full_id?: boolean | string
|
||||||
include_unloaded_segments?: boolean
|
include_unloaded_segments?: boolean
|
||||||
h?: Names
|
h?: CatCatNodeColumns
|
||||||
s?: Names
|
s?: Names
|
||||||
master_timeout?: Duration
|
master_timeout?: Duration
|
||||||
time?: TimeUnit
|
time?: TimeUnit
|
||||||
@ -14542,7 +14547,8 @@ export interface MigrationPostFeatureUpgradeRequest extends RequestBase {
|
|||||||
|
|
||||||
export interface MigrationPostFeatureUpgradeResponse {
|
export interface MigrationPostFeatureUpgradeResponse {
|
||||||
accepted: boolean
|
accepted: boolean
|
||||||
features: MigrationPostFeatureUpgradeMigrationFeature[]
|
features?: MigrationPostFeatureUpgradeMigrationFeature[]
|
||||||
|
reason?: string
|
||||||
}
|
}
|
||||||
|
|
||||||
export interface MlAdaptiveAllocationsSettings {
|
export interface MlAdaptiveAllocationsSettings {
|
||||||
|
|||||||
@ -4829,6 +4829,7 @@ export interface AnalysisIcuNormalizationCharFilter extends AnalysisCharFilterBa
|
|||||||
type: 'icu_normalizer'
|
type: 'icu_normalizer'
|
||||||
mode?: AnalysisIcuNormalizationMode
|
mode?: AnalysisIcuNormalizationMode
|
||||||
name?: AnalysisIcuNormalizationType
|
name?: AnalysisIcuNormalizationType
|
||||||
|
unicode_set_filter?: string
|
||||||
}
|
}
|
||||||
|
|
||||||
export type AnalysisIcuNormalizationMode = 'decompose' | 'compose'
|
export type AnalysisIcuNormalizationMode = 'decompose' | 'compose'
|
||||||
@ -7033,6 +7034,10 @@ export type CatCatDfaColumn = 'assignment_explanation' | 'ae' | 'create_time' |
|
|||||||
|
|
||||||
export type CatCatDfaColumns = CatCatDfaColumn | CatCatDfaColumn[]
|
export type CatCatDfaColumns = CatCatDfaColumn | CatCatDfaColumn[]
|
||||||
|
|
||||||
|
export type CatCatNodeColumn = 'build' | 'b' | 'completion.size' | 'cs' | 'completionSize' | 'cpu' | 'disk.avail' | 'd' | 'disk' | 'diskAvail' | 'disk.total' | 'dt' | 'diskTotal' | 'disk.used' | 'du' | 'diskUsed' | 'disk.used_percent' | 'dup' | 'diskUsedPercent' | 'fielddata.evictions' | 'fe' | 'fielddataEvictions' | 'fielddata.memory_size' | 'fm' | 'fielddataMemory' | 'file_desc.current' | 'fdc' | 'fileDescriptorCurrent' | 'file_desc.max' | 'fdm' | 'fileDescriptorMax' | 'file_desc.percent' | 'fdp' | 'fileDescriptorPercent' | 'flush.total' | 'ft' | 'flushTotal' | 'flush.total_time' | 'ftt' | 'flushTotalTime' | 'get.current' | 'gc' | 'getCurrent' | 'get.exists_time' | 'geti' | 'getExistsTime' | 'get.exists_total' | 'geto' | 'getExistsTotal' | 'get.missing_time' | 'gmti' | 'getMissingTime' | 'get.missing_total' | 'gmto' | 'getMissingTotal' | 'get.time' | 'gti' | 'getTime' | 'get.total' | 'gto' | 'getTotal' | 'heap.current' | 'hc' | 'heapCurrent' | 'heap.max' | 'hm' | 'heapMax' | 'heap.percent' | 'hp' | 'heapPercent' | 'http_address' | 'http' | 'id' | 'nodeId' | 'indexing.delete_current' | 'idc' | 'indexingDeleteCurrent' | 'indexing.delete_time' | 'idti' | 'indexingDeleteTime' | 'indexing.delete_total' | 'idto' | 'indexingDeleteTotal' | 'indexing.index_current' | 'iic' | 'indexingIndexCurrent' | 'indexing.index_failed' | 'iif' | 'indexingIndexFailed' | 'indexing.index_failed_due_to_version_conflict' | 'iifvc' | 'indexingIndexFailedDueToVersionConflict' | 'indexing.index_time' | 'iiti' | 'indexingIndexTime' | 'indexing.index_total' | 'iito' | 'indexingIndexTotal' | 'ip' | 'i' | 'jdk' | 'j' | 'load_1m' | 'l' | 'load_5m' | 'l' | 'load_15m' | 'l' | 'mappings.total_count' | 'mtc' | 'mappingsTotalCount' | 'mappings.total_estimated_overhead_in_bytes' | 'mteo' | 'mappingsTotalEstimatedOverheadInBytes' | 'master' | 'm' | 'merges.current' | 'mc' | 'mergesCurrent' | 'merges.current_docs' | 'mcd' | 'mergesCurrentDocs' | 'merges.current_size' | 'mcs' | 'mergesCurrentSize' | 'merges.total' | 'mt' | 'mergesTotal' | 'merges.total_docs' | 'mtd' | 'mergesTotalDocs' | 'merges.total_size' | 'mts' | 'mergesTotalSize' | 'merges.total_time' | 'mtt' | 'mergesTotalTime' | 'name' | 'n' | 'node.role' | 'r' | 'role' | 'nodeRole' | 'pid' | 'p' | 'port' | 'po' | 'query_cache.memory_size' | 'qcm' | 'queryCacheMemory' | 'query_cache.evictions' | 'qce' | 'queryCacheEvictions' | 'query_cache.hit_count' | 'qchc' | 'queryCacheHitCount' | 'query_cache.miss_count' | 'qcmc' | 'queryCacheMissCount' | 'ram.current' | 'rc' | 'ramCurrent' | 'ram.max' | 'rm' | 'ramMax' | 'ram.percent' | 'rp' | 'ramPercent' | 'refresh.total' | 'rto' | 'refreshTotal' | 'refresh.time' | 'rti' | 'refreshTime' | 'request_cache.memory_size' | 'rcm' | 'requestCacheMemory' | 'request_cache.evictions' | 'rce' | 'requestCacheEvictions' | 'request_cache.hit_count' | 'rchc' | 'requestCacheHitCount' | 'request_cache.miss_count' | 'rcmc' | 'requestCacheMissCount' | 'script.compilations' | 'scrcc' | 'scriptCompilations' | 'script.cache_evictions' | 'scrce' | 'scriptCacheEvictions' | 'search.fetch_current' | 'sfc' | 'searchFetchCurrent' | 'search.fetch_time' | 'sfti' | 'searchFetchTime' | 'search.fetch_total' | 'sfto' | 'searchFetchTotal' | 'search.open_contexts' | 'so' | 'searchOpenContexts' | 'search.query_current' | 'sqc' | 'searchQueryCurrent' | 'search.query_time' | 'sqti' | 'searchQueryTime' | 'search.query_total' | 'sqto' | 'searchQueryTotal' | 'search.scroll_current' | 'scc' | 'searchScrollCurrent' | 'search.scroll_time' | 'scti' | 'searchScrollTime' | 'search.scroll_total' | 'scto' | 'searchScrollTotal' | 'segments.count' | 'sc' | 'segmentsCount' | 'segments.fixed_bitset_memory' | 'sfbm' | 'fixedBitsetMemory' | 'segments.index_writer_memory' | 'siwm' | 'segmentsIndexWriterMemory' | 'segments.memory' | 'sm' | 'segmentsMemory' | 'segments.version_map_memory' | 'svmm' | 'segmentsVersionMapMemory' | 'shard_stats.total_count' | 'sstc' | 'shards' | 'shardStatsTotalCount' | 'suggest.current' | 'suc' | 'suggestCurrent' | 'suggest.time' | 'suti' | 'suggestTime' | 'suggest.total' | 'suto' | 'suggestTotal' | 'uptime' | 'u' | 'version' | 'v' | string
|
||||||
|
|
||||||
|
export type CatCatNodeColumns = CatCatNodeColumn | CatCatNodeColumn[]
|
||||||
|
|
||||||
export interface CatCatRequestBase extends RequestBase, SpecUtilsCommonCatQueryParameters {
|
export interface CatCatRequestBase extends RequestBase, SpecUtilsCommonCatQueryParameters {
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -8223,7 +8228,7 @@ export interface CatNodesRequest extends CatCatRequestBase {
|
|||||||
bytes?: Bytes
|
bytes?: Bytes
|
||||||
full_id?: boolean | string
|
full_id?: boolean | string
|
||||||
include_unloaded_segments?: boolean
|
include_unloaded_segments?: boolean
|
||||||
h?: Names
|
h?: CatCatNodeColumns
|
||||||
s?: Names
|
s?: Names
|
||||||
master_timeout?: Duration
|
master_timeout?: Duration
|
||||||
time?: TimeUnit
|
time?: TimeUnit
|
||||||
@ -14867,7 +14872,8 @@ export interface MigrationPostFeatureUpgradeRequest extends RequestBase {
|
|||||||
|
|
||||||
export interface MigrationPostFeatureUpgradeResponse {
|
export interface MigrationPostFeatureUpgradeResponse {
|
||||||
accepted: boolean
|
accepted: boolean
|
||||||
features: MigrationPostFeatureUpgradeMigrationFeature[]
|
features?: MigrationPostFeatureUpgradeMigrationFeature[]
|
||||||
|
reason?: string
|
||||||
}
|
}
|
||||||
|
|
||||||
export interface MlAdaptiveAllocationsSettings {
|
export interface MlAdaptiveAllocationsSettings {
|
||||||
|
|||||||
Reference in New Issue
Block a user