Auto-generated code for 8.16 (#2549)

This commit is contained in:
Elastic Machine
2025-01-07 18:52:07 +00:00
committed by GitHub
parent 6fb0f426c3
commit f9a5a18a71
38 changed files with 1260 additions and 298 deletions

View File

@ -3,11 +3,8 @@
[source, js]
----
const response = await client.indices.putSettings({
index: "my-index-000001",
settings: {
"index.blocks.read_only_allow_delete": null,
},
const response = await client.indices.getMapping({
index: "kibana_sample_data_ecommerce",
});
console.log(response);
----

View File

@ -11,6 +11,8 @@ const response = await client.indices.putSettings({
"index.indexing.slowlog.threshold.index.debug": "2s",
"index.indexing.slowlog.threshold.index.trace": "500ms",
"index.indexing.slowlog.source": "1000",
"index.indexing.slowlog.reformat": true,
"index.indexing.slowlog.include.user": true,
},
});
console.log(response);

View File

@ -0,0 +1,42 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-bit",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
element_type: "bit",
},
},
},
});
console.log(response);
const response1 = await client.bulk({
index: "my-rank-vectors-bit",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
my_vector: [127, -127, 0, 1, 42],
},
{
index: {
_id: "2",
},
},
{
my_vector: "8100012a7f",
},
],
});
console.log(response1);
----

View File

@ -1,15 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.cluster.putSettings({
persistent: {
"cluster.routing.allocation.disk.watermark.low": "100gb",
"cluster.routing.allocation.disk.watermark.high": "50gb",
"cluster.routing.allocation.disk.watermark.flood_stage": "10gb",
"cluster.info.update.interval": "1m",
},
});
console.log(response);
----

View File

@ -1,22 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "test-index",
query: {
nested: {
path: "inference_field.inference.chunks",
query: {
sparse_vector: {
field: "inference_field.inference.chunks.embeddings",
inference_id: "my-inference-id",
query: "mountain lake",
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,67 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-bit",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
element_type: "bit",
},
},
},
});
console.log(response);
const response1 = await client.bulk({
index: "my-rank-vectors-bit",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
my_vector: [127, -127, 0, 1, 42],
},
{
index: {
_id: "2",
},
},
{
my_vector: "8100012a7f",
},
],
});
console.log(response1);
const response2 = await client.search({
index: "my-rank-vectors-bit",
query: {
script_score: {
query: {
match_all: {},
},
script: {
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
params: {
query_vector: [
[
0.35, 0.77, 0.95, 0.15, 0.11, 0.08, 0.58, 0.06, 0.44, 0.52, 0.21,
0.62, 0.65, 0.16, 0.64, 0.39, 0.93, 0.06, 0.93, 0.31, 0.92, 0,
0.66, 0.86, 0.92, 0.03, 0.81, 0.31, 0.2, 0.92, 0.95, 0.64, 0.19,
0.26, 0.77, 0.64, 0.78, 0.32, 0.97, 0.84,
],
],
},
},
},
},
});
console.log(response2);
----

View File

@ -0,0 +1,26 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-rank-vectors-float",
query: {
script_score: {
query: {
match_all: {},
},
script: {
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
params: {
query_vector: [
[0.5, 10, 6],
[-0.5, 10, 10],
],
},
},
},
},
});
console.log(response);
----

View File

@ -14,6 +14,7 @@ const response = await client.indices.putSettings({
"index.search.slowlog.threshold.fetch.info": "800ms",
"index.search.slowlog.threshold.fetch.debug": "500ms",
"index.search.slowlog.threshold.fetch.trace": "200ms",
"index.search.slowlog.include.user": true,
},
});
console.log(response);

View File

@ -0,0 +1,67 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "movies",
size: 10,
retriever: {
rescorer: {
rescore: {
query: {
window_size: 50,
rescore_query: {
script_score: {
script: {
source:
"cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
params: {
queryVector: [-0.5, 90, -10, 14.8, -156],
},
},
},
},
},
},
retriever: {
rrf: {
rank_window_size: 100,
retrievers: [
{
standard: {
query: {
sparse_vector: {
field: "plot_embedding",
inference_id: "my-elser-model",
query: "films that explore psychological depths",
},
},
},
},
{
standard: {
query: {
multi_match: {
query: "crime",
fields: ["plot", "title"],
},
},
},
},
{
knn: {
field: "vector",
query_vector: [10, 22, 77],
k: 10,
num_candidates: 10,
},
},
],
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.updateAliases({
actions: [
{
remove_index: {
index: "my-index-2099.05.06-000001",
},
},
],
});
console.log(response);
----

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
order_stats: {
stats: {
field: "taxful_total_price",
},
},
},
});
console.log(response);
----

View File

@ -4,9 +4,11 @@
[source, js]
----
const response = await client.indices.putSettings({
index: "my-index-000001",
index: "*",
settings: {
"index.search.slowlog.include.user": true,
"index.search.slowlog.threshold.fetch.warn": "30s",
"index.search.slowlog.threshold.query.warn": "30s",
},
});
console.log(response);

View File

@ -12,6 +12,13 @@ const response = await client.search({
fields: ["my_field", "my_field._2gram", "my_field._3gram"],
},
},
highlight: {
fields: {
my_field: {
matched_fields: ["my_field._index_prefix"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,24 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-index-000001",
query: {
prefix: {
full_name: {
value: "ki",
},
},
},
highlight: {
fields: {
full_name: {
matched_fields: ["full_name._index_prefix"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,33 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_sales: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
},
aggs: {
daily_revenue: {
sum: {
field: "taxful_total_price",
},
},
smoothed_revenue: {
moving_fn: {
buckets_path: "daily_revenue",
window: 3,
script: "MovingFunctions.unweightedAvg(values)",
},
},
},
},
},
});
console.log(response);
----

View File

@ -1,26 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "test-index",
query: {
nested: {
path: "inference_field.inference.chunks",
query: {
knn: {
field: "inference_field.inference.chunks.embeddings",
query_vector_builder: {
text_embedding: {
model_id: "my_inference_id",
model_text: "mountain lake",
},
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,37 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_sales: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
format: "yyyy-MM-dd",
},
aggs: {
revenue: {
sum: {
field: "taxful_total_price",
},
},
unique_customers: {
cardinality: {
field: "customer_id",
},
},
avg_basket_size: {
avg: {
field: "total_quantity",
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,39 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
categories: {
terms: {
field: "category.keyword",
size: 5,
order: {
total_revenue: "desc",
},
},
aggs: {
total_revenue: {
sum: {
field: "taxful_total_price",
},
},
avg_order_value: {
avg: {
field: "taxful_total_price",
},
},
total_items: {
sum: {
field: "total_quantity",
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,30 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-byte",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
element_type: "byte",
},
},
},
});
console.log(response);
const response1 = await client.index({
index: "my-rank-vectors-byte",
id: 1,
document: {
my_vector: [
[1, 2, 3],
[4, 5, 6],
],
},
});
console.log(response1);
----

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
avg_order_value: {
avg: {
field: "taxful_total_price",
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,21 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_orders: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
format: "yyyy-MM-dd",
min_doc_count: 0,
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,12 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.getSettings({
index: "_all",
expand_wildcards: "all",
filter_path: "*.settings.index.*.slowlog",
});
console.log(response);
----

View File

@ -0,0 +1,22 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
sales_by_category: {
terms: {
field: "category.keyword",
size: 5,
order: {
_count: "desc",
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,31 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_sales: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
},
aggs: {
revenue: {
sum: {
field: "taxful_total_price",
},
},
cumulative_revenue: {
cumulative_sum: {
buckets_path: "revenue",
},
},
},
},
},
});
console.log(response);
----

View File

@ -7,7 +7,7 @@ const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "elser_embeddings",
inference_config: {
service: "elser",
service: "elasticsearch",
service_settings: {
num_allocations: 1,
num_threads: 1,

View File

@ -0,0 +1,29 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-float",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
},
},
},
});
console.log(response);
const response1 = await client.index({
index: "my-rank-vectors-float",
id: 1,
document: {
my_vector: [
[0.5, 10, 6],
[-0.5, 10, 10],
],
},
});
console.log(response1);
----

View File

@ -4,9 +4,10 @@
[source, js]
----
const response = await client.indices.putSettings({
index: "my-index-000001",
index: "*",
settings: {
"index.indexing.slowlog.include.user": true,
"index.indexing.slowlog.threshold.index.warn": "30s",
},
});
console.log(response);