Compare commits

...

40 Commits

Author SHA1 Message Date
48dcef4975 Release notes fo 8.18.1 (#2763) (#2778)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-21 13:52:25 -05:00
b5a36f37ab Improve deserialization docs (#2766) (#2767)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-17 15:10:45 -05:00
a31920b785 Put node roles support back (#2759) (#2762)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-17 13:55:18 -05:00
846c50b8bf Bump transport to latest 8.x version (#2757) (#2758)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-17 13:54:04 -05:00
5204faeb66 Bump to 8.18.1 (#2760) (#2761)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-16 13:42:12 -05:00
1a3504f1bb Add changelog for 8.18 (#2746) (#2748)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-15 14:31:10 -05:00
4a059fdc0c Bug #2694 (#2731) (#2744)
Co-authored-by: Siddhu545 <Siddharthkhengare@gmail.com>
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
Co-authored-by: Siddharth Khengare <67581382+Siddhu545@users.noreply.github.com>
2025-04-15 13:26:29 -05:00
c5dd4e96d4 Auto-generated API code (#2735) 2025-04-14 11:49:52 -05:00
c9666e1778 Make example generation quiet by default (#2722) (#2724)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-08 11:39:19 -05:00
1ee6a34e73 Auto-generated API code (#2716) 2025-04-07 14:43:20 -05:00
34bb7f5916 [DOCS]Removes link pointing to EIS reference docs. (#2708) (#2709)
(cherry picked from commit 6042bcd20c)

Co-authored-by: István Zoltán Szabó <szabosteve@gmail.com>
2025-04-07 11:12:04 -05:00
124753aea7 Auto-generated API code (#2691)f 2025-04-04 19:22:52 +00:00
e36b0e5374 Bump to 8.18.0 (#2702) (#2703)
(cherry picked from commit 3d59389b9d)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-04-04 14:01:11 -05:00
e5c88add07 Auto-generated API code (#2680) 2025-03-24 12:19:29 -05:00
75f31d974d Drop broken support for roles (#2674) (#2675)
(cherry picked from commit e502d2f17a)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-03-21 14:26:24 -05:00
177a420521 Auto-generated API code (#2658) 2025-03-20 01:01:14 +00:00
c0f7fa503a Report correct transport connection type in telemetry (#2599) (#2604)
Fixes #2324

(cherry picked from commit 172180cb21)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-02-03 13:29:54 -06:00
93e2b8b695 Auto-generated API code (#2581) 2025-01-28 11:52:55 -06:00
9c092a0b30 Update dependency @types/node to v22.10.7 (#2576) (#2582)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit 5f9561d566)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2025-01-21 13:11:24 -06:00
d161c0a428 [Backport 8.x] Update dependency typescript to v5.7.3 (#2571)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit 2bcbd36d75)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2025-01-13 10:19:45 -06:00
8c7d4c42e6 Auto-generated code for 8.x (#2568) 2025-01-13 10:06:57 -06:00
fbc4fa0685 [Backport 8.x] Update dependency @types/node to v22.10.5 (#2563)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit 2b2a9947c7)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2025-01-08 13:25:53 -06:00
cb6084b7c3 Auto-generated code for 8.x (#2548) 2025-01-07 12:52:35 -06:00
35ce1bfef1 [Backport 8.x] Drop @types/tap for built-in types (#2562)
(cherry picked from commit 0ee486bc9c)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-01-07 11:07:00 -06:00
151aef2707 [Backport 8.x] Update @sinonjs/fake-timers digest to 48f089f (#2560)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit f835fa3b12)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2025-01-06 12:51:31 -06:00
8579a85fde [Backport 8.x] Update dependency @elastic/request-converter to v8.17.0 (#2558)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit e688f36396)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2025-01-06 12:40:52 -06:00
be0400789a Prep 8.17.0 (#2543) 2024-12-12 10:50:16 -06:00
e2905c5708 Prep 8.16.3 for release (#2540) 2024-12-12 09:35:28 -06:00
f02c66cdcc Auto-generated code for 8.x (#2529) 2024-12-11 10:12:08 -06:00
8d868df86a [Backport 8.x] Parse branch name during code gen including 'x' (#2535)
(cherry picked from commit e992c329c3)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-12-10 11:13:03 -06:00
5ebd549ad1 [Backport 8.x] Checkout correct branch of generator (#2533)
(cherry picked from commit ed3cace127)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-12-10 10:19:55 -06:00
7f364b75b7 [Backport 8.x] Codegen for 8.x clients should use the 8.x generator branch (#2519)
(cherry picked from commit 15b9ee2f06)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-12-05 10:39:22 -06:00
fe0ddb31a1 [Backport 8.x] Update dependency into-stream to v8 (#2513)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit 101f34bd5e)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2024-12-02 12:18:18 -06:00
955eb121fb [Backport 8.x] Update dependency @types/node to v22.10.1 (#2510)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit 86f488f68f)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2024-12-02 12:13:54 -06:00
da1a798310 [Backport 8.x] Update dependency @elastic/request-converter to v8.16.2 (#2512)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit c1e90b12f0)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2024-12-02 12:13:07 -06:00
82c9e5df37 [Backport 8.x] Update dependency typescript to v5.7.2 (#2511)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
(cherry picked from commit 5cb670256e)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2024-12-02 12:09:36 -06:00
4e1273ef33 Auto-generated code for 8.x (#2500) 2024-12-02 12:06:57 -06:00
dbd0ec2457 [Backport 8.x] Update changelog to include 8.16.2 and 8.15.3 (#2495)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-11-21 10:42:34 -06:00
fc7109aa66 [Backport 8.x] Ignore tap artifacts (#2491)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-11-21 10:21:56 -06:00
758b745254 Add docstrings for Client class and related properties (#2484) (#2485)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-11-21 10:20:37 -06:00
244 changed files with 15051 additions and 3281 deletions

View File

@ -5,3 +5,4 @@ elasticsearch
.git
lib
junit-output
.tap

14
.github/make.sh vendored
View File

@ -65,7 +65,7 @@ codegen)
if [ -v "$VERSION" ] || [[ -z "$VERSION" ]]; then
# fall back to branch name or `main` if no VERSION is set
branch_name=$(git rev-parse --abbrev-ref HEAD)
if [[ "$branch_name" =~ ^[0-9]+\.[0-9]+ ]]; then
if [[ "$branch_name" =~ ^[0-9]+\.([0-9]+|x) ]]; then
echo -e "\033[36;1mTARGET: codegen -> No VERSION argument found, using branch name: \`$branch_name\`\033[0m"
VERSION="$branch_name"
else
@ -150,7 +150,7 @@ if [[ -z "${BUILDKITE+x}" ]] && [[ -z "${CI+x}" ]] && [[ -z "${GITHUB_ACTIONS+x}
-u "$(id -u):$(id -g)" \
--volume "$repo:/usr/src/elasticsearch-js" \
--volume /usr/src/elasticsearch-js/node_modules \
--volume "$(realpath $repo/../elastic-client-generator-js):/usr/src/elastic-client-generator-js" \
--volume "$(realpath "$repo/../elastic-client-generator-js"):/usr/src/elastic-client-generator-js" \
--env "WORKFLOW=$WORKFLOW" \
--name make-elasticsearch-js \
--rm \
@ -159,6 +159,14 @@ if [[ -z "${BUILDKITE+x}" ]] && [[ -z "${CI+x}" ]] && [[ -z "${GITHUB_ACTIONS+x}
node .buildkite/make.mjs --task $TASK ${TASK_ARGS[*]}"
else
echo -e "\033[34;1mINFO: Running in CI mode"
# determine branch to clone
GENERATOR_BRANCH="main"
if [[ "$VERSION" == 8.* ]]; then
GENERATOR_BRANCH="8.x"
fi
echo -e "\033[34;1mINFO: Generator branch: $GENERATOR_BRANCH"
docker run \
--volume "$repo:/usr/src/elasticsearch-js" \
--volume /usr/src/elasticsearch-js/node_modules \
@ -168,7 +176,7 @@ else
--rm \
$product \
/bin/bash -c "cd /usr/src && \
git clone https://$CLIENTS_GITHUB_TOKEN@github.com/elastic/elastic-client-generator-js.git && \
git clone --branch $GENERATOR_BRANCH https://$CLIENTS_GITHUB_TOKEN@github.com/elastic/elastic-client-generator-js.git && \
mkdir -p /usr/src/elastic-client-generator-js/output && \
cd /usr/src/elasticsearch-js && \
node .buildkite/make.mjs --task $TASK ${TASK_ARGS[*]}"

1
.gitignore vendored
View File

@ -67,3 +67,4 @@ junit-output
bun.lockb
test-results
processinfo
.tap

View File

@ -73,3 +73,4 @@ CONTRIBUTING.md
src
bun.lockb
.tap

View File

@ -167,16 +167,19 @@ const client = new Client({
----
|`nodeFilter`
a|`function` - Filters which node not to use for a request. +
a|`function` - Takes a `Connection` and returns `true` if it can be sent a request, otherwise `false`. +
_Default:_
[source,js]
----
function defaultNodeFilter (node) {
// avoid master only nodes
if (node.roles.master === true &&
node.roles.data === false &&
node.roles.ingest === false) {
return false
function defaultNodeFilter (conn) {
if (conn.roles != null) {
if (
// avoid master-only nodes
conn.roles.master &&
!conn.roles.data &&
!conn.roles.ingest &&
!conn.roles.ml
) return false
}
return true
}

View File

@ -1,6 +1,76 @@
[[changelog-client]]
== Release notes
[discrete]
=== 8.18.1
[discrete]
==== Fixes
[discrete]
===== Fix broken node roles and node filter
The docs note a `nodeFilter` option on the client that will, by default, filter the nodes based on any `roles` values that are set at instantition. At some point, this functionality was partially disabled. This brings the feature back, ensuring that it matches what the documentation has said it does all along.
[discrete]
=== 8.18.0
[discrete]
==== Features
[discrete]
===== Support for Elasticsearch `v8.18`
You can find all the API changes
https://www.elastic.co/guide/en/elasticsearch/reference/8.18/release-notes-8.18.0.html[here].
[discrete]
==== Fixes
[discrete]
===== Improved Cloud ID parsing
When using a Cloud ID as the `cloud` parameter to instantiate the client, that ID was assumed to be in the correct format. New assertions have been added to verify that format and throw a `ConfigurationError` if it is invalid. See https://github.com/elastic/elasticsearch-js/issues/2694[#2694].
[discrete]
=== 8.17.0
[discrete]
==== Features
[discrete]
===== Support for Elasticsearch `v8.17`
You can find all the API changes
https://www.elastic.co/guide/en/elasticsearch/reference/8.17/release-notes-8.17.0.html[here].
[discrete]
=== 8.16.3
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.16`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
=== 8.16.2
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.16`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
===== Drop testing artifacts from npm package
Tap, the unit testing tool used by this project, was recently upgraded and started writing to a `.tap` directory. Since tests are run prior to an `npm publish` in CI, this directory was being included in the published package and bloating its size.
[discrete]
=== 8.16.1
@ -37,11 +107,27 @@ The ES|QL helper can now return results as an Apache Arrow `Table` or `RecordBat
The client's `disablePrototypePoisoningProtection` option was set to `true` by default, but when it was set to any other value it was ignored, making it impossible to enable prototype poisoning protection without providing a custom serializer implementation.
[discrete]
=== 8.15.3
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.15`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
===== Drop testing artifacts from npm package
Tap, the unit testing tool, was recently upgraded and started writing to a `.tap` directory. Since tests are run prior to an `npm publish` in CI, this directory was being included in the published package and bloating its size.
[discrete]
=== 8.15.2
[discrete]
==== Features
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.15`
@ -52,7 +138,7 @@ Updated TypeScript types based on fixes and improvements to the Elasticsearch sp
=== 8.15.1
[discrete]
==== Features
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.15`

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.getDataStream({
name: "my-data-stream",
filter_path: "data_streams.indices.index_name",
});
console.log(response);
----

View File

@ -0,0 +1,46 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
range: {
year: {
gt: 2023,
},
},
},
},
},
{
standard: {
query: {
term: {
topic: "elastic",
},
},
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
aggs: {
topics: {
terms: {
field: "topic",
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "rerank",
inference_id: "my-rerank-model",
inference_config: {
service: "cohere",
service_settings: {
model_id: "rerank-english-v3.0",
api_key: "{{COHERE_API_KEY}}",
},
},
});
console.log(response);
----

View File

@ -3,9 +3,8 @@
[source, js]
----
const response = await client.cluster.getSettings({
flat_settings: "true",
filter_path: "transient",
const response = await client.indices.getMapping({
index: "kibana_sample_data_ecommerce",
});
console.log(response);
----

View File

@ -11,6 +11,8 @@ const response = await client.indices.putSettings({
"index.indexing.slowlog.threshold.index.debug": "2s",
"index.indexing.slowlog.threshold.index.trace": "500ms",
"index.indexing.slowlog.source": "1000",
"index.indexing.slowlog.reformat": true,
"index.indexing.slowlog.include.user": true,
},
});
console.log(response);

View File

@ -0,0 +1,42 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-bit",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
element_type: "bit",
},
},
},
});
console.log(response);
const response1 = await client.bulk({
index: "my-rank-vectors-bit",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
my_vector: [127, -127, 0, 1, 42],
},
{
index: {
_id: "2",
},
},
{
my_vector: "8100012a7f",
},
],
});
console.log(response1);
----

View File

@ -0,0 +1,49 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example_nested",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
nested: {
path: "nested_field",
inner_hits: {
name: "nested_vector",
_source: false,
fields: ["nested_field.paragraph_id"],
},
query: {
knn: {
field: "nested_field.nested_vector",
query_vector: [1, 0, 0.5],
k: 10,
},
},
},
},
},
},
{
standard: {
query: {
term: {
topic: "ai",
},
},
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: ["topic"],
});
console.log(response);
----

View File

@ -3,8 +3,12 @@
[source, js]
----
const response = await client.esql.asyncQuery({
format: "json",
const response = await client.transport.request({
method: "POST",
path: "/_query/async",
querystring: {
format: "json",
},
body: {
query:
"\n FROM my-index-000001,cluster_one:my-index-000001,cluster_two:my-index*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",

View File

@ -10,7 +10,7 @@ const response = await client.ingest.putPipeline({
{
attachment: {
field: "data",
remove_binary: false,
remove_binary: true,
},
},
],

View File

@ -0,0 +1,57 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
term: {
topic: "elastic",
},
},
},
},
{
rrf: {
retrievers: [
{
standard: {
query: {
query_string: {
query:
"(information retrieval) OR (artificial intelligence)",
default_field: "text",
},
},
},
},
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
size: 1,
explain: true,
});
console.log(response);
----

View File

@ -3,8 +3,9 @@
[source, js]
----
const response = await client.searchApplication.renderQuery({
name: "my-app",
const response = await client.transport.request({
method: "POST",
path: "/_application/search_application/my-app/_render_query",
body: {
params: {
query_string: "my first query",

View File

@ -1,15 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.cluster.putSettings({
persistent: {
"cluster.routing.allocation.disk.watermark.low": "100gb",
"cluster.routing.allocation.disk.watermark.high": "50gb",
"cluster.routing.allocation.disk.watermark.flood_stage": "10gb",
"cluster.info.update.interval": "1m",
},
});
console.log(response);
----

View File

@ -0,0 +1,15 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.putSettings({
index: ".reindexed-v9-ml-anomalies-custom-example",
settings: {
index: {
number_of_replicas: "<original_number_of_replicas>",
},
},
});
console.log(response);
----

View File

@ -0,0 +1,20 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "POST",
path: "/_inference/chat_completion/openai-completion/_stream",
body: {
model: "gpt-4o",
messages: [
{
role: "user",
content: "What is Elastic?",
},
],
},
});
console.log(response);
----

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.addBlock({
index: ".ml-anomalies-custom-example",
block: "read_only",
});
console.log(response);
----

View File

@ -3,11 +3,13 @@
[source, js]
----
const response = await client.inference.inference({
const response = await client.inference.put({
task_type: "my-inference-endpoint",
inference_id: "_update",
service_settings: {
api_key: "<API_KEY>",
inference_config: {
service_settings: {
api_key: "<API_KEY>",
},
},
});
console.log(response);

View File

@ -11,7 +11,7 @@ const response = await client.searchApplication.put({
script: {
lang: "mustache",
source:
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n \n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "highlight": {\n "fields": {\n "title": { "fragment_size": 0 },\n "plot": { "fragment_size": 200 }\n }\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "highlight": {\n "fields": {\n "title": { "fragment_size": 0 },\n "plot": { "fragment_size": 200 }\n }\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
params: {
query: "",
_es_filters: {},

View File

@ -16,7 +16,7 @@ const response = await client.search({
},
},
field: "text",
inference_id: "my-cohere-rerank-model",
inference_id: "elastic-rerank",
inference_text: "How often does the moon hide the sun?",
rank_window_size: 100,
min_score: 0.5,

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.simulate.ingest({
const response = await client.transport.request({
method: "POST",
path: "/_ingest/_simulate",
body: {
docs: [
{

View File

@ -0,0 +1,19 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.security.queryRole({
query: {
bool: {
must_not: {
term: {
"metadata._reserved": true,
},
},
},
},
sort: ["name"],
});
console.log(response);
----

View File

@ -3,8 +3,8 @@
[source, js]
----
const response = await client.security.queryRole({
sort: ["name"],
const response = await client.indices.rollover({
alias: "datastream",
});
console.log(response);
----

View File

@ -0,0 +1,67 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-bit",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
element_type: "bit",
},
},
},
});
console.log(response);
const response1 = await client.bulk({
index: "my-rank-vectors-bit",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
my_vector: [127, -127, 0, 1, 42],
},
{
index: {
_id: "2",
},
},
{
my_vector: "8100012a7f",
},
],
});
console.log(response1);
const response2 = await client.search({
index: "my-rank-vectors-bit",
query: {
script_score: {
query: {
match_all: {},
},
script: {
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
params: {
query_vector: [
[
0.35, 0.77, 0.95, 0.15, 0.11, 0.08, 0.58, 0.06, 0.44, 0.52, 0.21,
0.62, 0.65, 0.16, 0.64, 0.39, 0.93, 0.06, 0.93, 0.31, 0.92, 0,
0.66, 0.86, 0.92, 0.03, 0.81, 0.31, 0.2, 0.92, 0.95, 0.64, 0.19,
0.26, 0.77, 0.64, 0.78, 0.32, 0.97, 0.84,
],
],
},
},
},
},
});
console.log(response2);
----

View File

@ -1,28 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.esql.query({
format: "txt",
query:
"\n FROM library\n | SORT page_count DESC\n | KEEP name, author\n | LOOKUP era ON author\n | LIMIT 5\n ",
tables: {
era: {
author: {
keyword: [
"Frank Herbert",
"Peter F. Hamilton",
"Vernor Vinge",
"Alastair Reynolds",
"James S.A. Corey",
],
},
era: {
keyword: ["The New Wave", "Diamond", "Diamond", "Diamond", "Hadron"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.addBlock({
index: ".ml-anomalies-custom-example",
block: "write",
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.oidcLogout({
const response = await client.transport.request({
method: "POST",
path: "/_security/oidc/logout",
body: {
token:
"dGhpcyBpcyBub3QgYSByZWFsIHRva2VuIGJ1dCBpdCBpcyBvbmx5IHRlc3QgZGF0YS4gZG8gbm90IHRyeSB0byByZWFkIHRva2VuIQ==",

View File

@ -0,0 +1,26 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-rank-vectors-float",
query: {
script_score: {
query: {
match_all: {},
},
script: {
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
params: {
query_vector: [
[0.5, 10, 6],
[-0.5, 10, 10],
],
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,35 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ingest.putPipeline({
id: "attachment",
description: "Extract attachment information including original binary",
processors: [
{
attachment: {
field: "data",
remove_binary: false,
},
},
],
});
console.log(response);
const response1 = await client.index({
index: "my-index-000001",
id: "my_id",
pipeline: "attachment",
document: {
data: "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0=",
},
});
console.log(response1);
const response2 = await client.get({
index: "my-index-000001",
id: "my_id",
});
console.log(response2);
----

View File

@ -0,0 +1,24 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "test-index",
query: {
match: {
my_field: "Which country is Paris in?",
},
},
highlight: {
fields: {
my_field: {
type: "semantic",
number_of_fragments: 2,
order: "score",
},
},
},
});
console.log(response);
----

View File

@ -3,10 +3,12 @@
[source, js]
----
const response = await client.esql.asyncQueryGet({
id: "FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
wait_for_completion_timeout: "30s",
body: null,
const response = await client.transport.request({
method: "GET",
path: "/_query/async/FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE&#x3D;",
querystring: {
wait_for_completion_timeout: "30s",
},
});
console.log(response);
----

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "test-index",
mappings: {
properties: {
source_field: {
type: "text",
fields: {
infer_field: {
type: "semantic_text",
inference_id: ".elser-2-elasticsearch",
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "rerank",
inference_id: "my-elastic-rerank",
inference_config: {
service: "elasticsearch",
service_settings: {
model_id: ".rerank-v1",
num_threads: 1,
adaptive_allocations: {
enabled: true,
min_number_of_allocations: 1,
max_number_of_allocations: 4,
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,28 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-index-*",
query: {
bool: {
must: [
{
match: {
"user.id": "kimchy",
},
},
],
must_not: [
{
terms: {
_index: ["my-index-01"],
},
},
],
},
},
});
console.log(response);
----

View File

@ -0,0 +1,31 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ilm.putLifecycle({
name: "my_policy",
policy: {
phases: {
hot: {
actions: {
rollover: {
max_primary_shard_size: "50gb",
},
searchable_snapshot: {
snapshot_repository: "backing_repo",
replicate_for: "14d",
},
},
},
delete: {
min_age: "28d",
actions: {
delete: {},
},
},
},
},
});
console.log(response);
----

View File

@ -14,6 +14,7 @@ const response = await client.indices.putSettings({
"index.search.slowlog.threshold.fetch.info": "800ms",
"index.search.slowlog.threshold.fetch.debug": "500ms",
"index.search.slowlog.threshold.fetch.trace": "200ms",
"index.search.slowlog.include.user": true,
},
});
console.log(response);

View File

@ -0,0 +1,70 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "movies",
size: 10,
retriever: {
rescorer: {
rescore: {
window_size: 50,
query: {
rescore_query: {
script_score: {
query: {
match_all: {},
},
script: {
source:
"cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
params: {
queryVector: [-0.5, 90, -10, 14.8, -156],
},
},
},
},
},
},
retriever: {
rrf: {
rank_window_size: 100,
retrievers: [
{
standard: {
query: {
sparse_vector: {
field: "plot_embedding",
inference_id: "my-elser-model",
query: "films that explore psychological depths",
},
},
},
},
{
standard: {
query: {
multi_match: {
query: "crime",
fields: ["plot", "title"],
},
},
},
},
{
knn: {
field: "vector",
query_vector: [10, 22, 77],
k: 10,
num_candidates: 10,
},
},
],
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-index",
settings: {
index: {
number_of_shards: 3,
"blocks.write": true,
},
},
mappings: {
properties: {
field1: {
type: "text",
},
},
},
});
console.log(response);
----

View File

@ -1,23 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.bulk({
index: "test-index",
operations: [
{
update: {
_id: "1",
},
},
{
doc: {
infer_field: "updated inference field",
source_field: "updated source field",
},
},
],
});
console.log(response);
----

View File

@ -0,0 +1,19 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: ".ml-anomalies-custom-example",
size: 0,
aggs: {
job_ids: {
terms: {
field: "job_id",
size: 100,
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,61 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
linear: {
retrievers: [
{
retriever: {
standard: {
query: {
function_score: {
query: {
term: {
topic: "ai",
},
},
functions: [
{
script_score: {
script: {
source: "doc['timestamp'].value.millis",
},
},
},
],
boost_mode: "replace",
},
},
sort: {
timestamp: {
order: "asc",
},
},
},
},
weight: 2,
normalizer: "minmax",
},
{
retriever: {
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
weight: 1.5,
},
],
rank_window_size: 10,
},
},
_source: false,
});
console.log(response);
----

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.updateAliases({
actions: [
{
remove_index: {
index: "my-index-2099.05.06-000001",
},
},
],
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.esql.asyncQuery({
const response = await client.transport.request({
method: "POST",
path: "/_query/async",
body: {
query:
"\n FROM library\n | EVAL year = DATE_TRUNC(1 YEARS, release_date)\n | STATS MAX(page_count) BY year\n | SORT year\n | LIMIT 5\n ",

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
order_stats: {
stats: {
field: "taxful_total_price",
},
},
},
});
console.log(response);
----

View File

@ -3,9 +3,9 @@
[source, js]
----
const response = await client.esql.asyncQueryGet({
id: "FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
body: null,
const response = await client.transport.request({
method: "GET",
path: "/_query/async/FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM&#x3D;",
});
console.log(response);
----

View File

@ -4,16 +4,12 @@
[source, js]
----
const response = await client.indices.create({
index: "semantic-embeddings",
index: "jinaai-index",
mappings: {
properties: {
semantic_text: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
content: {
type: "text",
copy_to: "semantic_text",
type: "semantic_text",
inference_id: "jinaai-embeddings",
},
},
},

View File

@ -0,0 +1,47 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "POST",
path: "/_inference/chat_completion/openai-completion/_stream",
body: {
messages: [
{
role: "user",
content: [
{
type: "text",
text: "What's the price of a scarf?",
},
],
},
],
tools: [
{
type: "function",
function: {
name: "get_current_price",
description: "Get the current price of a item",
parameters: {
type: "object",
properties: {
item: {
id: "123",
},
},
},
},
},
],
tool_choice: {
type: "function",
function: {
name: "get_current_price",
},
},
},
});
console.log(response);
----

View File

@ -10,7 +10,8 @@ const response = await client.inference.put({
service: "openai",
service_settings: {
api_key: "<api_key>",
model_id: "text-embedding-ada-002",
model_id: "text-embedding-3-small",
dimensions: 128,
},
},
});

View File

@ -3,9 +3,9 @@
[source, js]
----
const response = await client.inference.streamInference({
task_type: "completion",
inference_id: "openai-completion",
const response = await client.transport.request({
method: "POST",
path: "/_inference/completion/openai-completion/_stream",
body: {
input: "What is Elastic?",
},

View File

@ -0,0 +1,17 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "elser-model-eis",
inference_config: {
service: "elastic",
service_settings: {
model_name: "elser",
},
},
});
console.log(response);
----

View File

@ -8,11 +8,6 @@ const response = await client.search({
query: {
bool: {
must: [
{
term: {
"category.keyword": "Main Course",
},
},
{
term: {
tags: "vegetarian",
@ -27,6 +22,11 @@ const response = await client.search({
},
],
should: [
{
term: {
category: "Main Course",
},
},
{
multi_match: {
query: "curry spicy",

View File

@ -3,15 +3,18 @@
[source, js]
----
const response = await client.knnSearch({
index: "my-index",
const response = await client.search({
index: "image-index",
knn: {
field: "image_vector",
query_vector: [0.3, 0.1, 1.2],
field: "image-vector",
query_vector: [-5, 9, -12],
k: 10,
num_candidates: 100,
rescore_vector: {
oversample: 2,
},
},
_source: ["name", "file_type"],
fields: ["title", "file-type"],
});
console.log(response);
----

View File

@ -5,7 +5,7 @@
----
const response = await client.cluster.putSettings({
persistent: {
"cluster.routing.allocation.disk.watermark.low": "30gb",
"migrate.data_stream_reindex_max_request_per_second": 10000,
},
});
console.log(response);

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ingest.simulate({
id: "query_helper_pipeline",
docs: [
{
_source: {
content:
"artificial intelligence in medicine articles published in the last 12 months",
},
},
],
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.oidcPrepareAuthentication({
const response = await client.transport.request({
method: "POST",
path: "/_security/oidc/prepare",
body: {
realm: "oidc1",
state: "lGYK0EcSLjqH6pkT5EVZjC6eIW5YCGgywj2sxROO",

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "jinaai-index",
query: {
semantic: {
field: "content",
query: "who inspired taking care of the sea?",
},
},
});
console.log(response);
----

View File

@ -0,0 +1,10 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.getSettings({
index: ".reindexed-v9-ml-anomalies-custom-example",
});
console.log(response);
----

View File

@ -3,8 +3,12 @@
[source, js]
----
const response = await client.esql.asyncQuery({
format: "json",
const response = await client.transport.request({
method: "POST",
path: "/_query/async",
querystring: {
format: "json",
},
body: {
query:
"\n FROM cluster_one:my-index*,cluster_two:logs*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",

View File

@ -9,7 +9,6 @@ const response = await client.indices.create({
properties: {
inference_field: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
},
},

View File

@ -45,7 +45,7 @@ console.log(response);
const response1 = await client.indices.putIndexTemplate({
name: 2,
index_patterns: ["k8s*"],
index_patterns: ["k9s*"],
composed_of: ["destination_template"],
data_stream: {},
});

View File

@ -4,9 +4,11 @@
[source, js]
----
const response = await client.indices.putSettings({
index: "my-index-000001",
index: "*",
settings: {
"index.search.slowlog.include.user": true,
"index.search.slowlog.threshold.fetch.warn": "30s",
"index.search.slowlog.threshold.query.warn": "30s",
},
});
console.log(response);

View File

@ -11,7 +11,7 @@ const response = await client.searchApplication.put({
script: {
lang: "mustache",
source:
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n \n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
params: {
query: "",
_es_filters: {},

View File

@ -6,14 +6,15 @@
const response = await client.search({
index: "test-index",
query: {
nested: {
path: "inference_field.inference.chunks",
query: {
sparse_vector: {
field: "inference_field.inference.chunks.embeddings",
inference_id: "my-inference-id",
query: "mountain lake",
},
match: {
my_semantic_field: "Which country is Paris in?",
},
},
highlight: {
fields: {
my_semantic_field: {
number_of_fragments: 2,
order: "score",
},
},
},

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.reindex({
wait_for_completion: "false",
source: {
index: ".ml-anomalies-custom-example",
},
dest: {
index: ".reindexed-v9-ml-anomalies-custom-example",
},
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.bulkUpdateApiKeys({
const response = await client.transport.request({
method: "POST",
path: "/_security/api_key/_bulk_update",
body: {
ids: ["VuaCfGcBCdbkQm-e5aOx", "H3_AhoIBA9hmeQJdg7ij"],
},

View File

@ -12,6 +12,13 @@ const response = await client.search({
fields: ["my_field", "my_field._2gram", "my_field._3gram"],
},
},
highlight: {
fields: {
my_field: {
matched_fields: ["my_field._index_prefix"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,24 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-index-000001",
query: {
prefix: {
full_name: {
value: "ki",
},
},
},
highlight: {
fields: {
full_name: {
matched_fields: ["full_name._index_prefix"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,33 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_sales: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
},
aggs: {
daily_revenue: {
sum: {
field: "taxful_total_price",
},
},
smoothed_revenue: {
moving_fn: {
buckets_path: "daily_revenue",
window: 3,
script: "MovingFunctions.unweightedAvg(values)",
},
},
},
},
},
});
console.log(response);
----

View File

@ -1,26 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "test-index",
query: {
nested: {
path: "inference_field.inference.chunks",
query: {
knn: {
field: "inference_field.inference.chunks.embeddings",
query_vector_builder: {
text_embedding: {
model_id: "my_inference_id",
model_text: "mountain lake",
},
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,44 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
{
text_similarity_reranker: {
retriever: {
standard: {
query: {
term: {
topic: "ai",
},
},
},
},
field: "text",
inference_id: "my-rerank-model",
inference_text:
"Can I use generative AI to identify user intent and improve search relevance?",
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.textStructure.findMessageStructure({
const response = await client.transport.request({
method: "POST",
path: "/_text_structure/find_message_structure",
body: {
messages: [
"[2024-03-05T10:52:36,256][INFO ][o.a.l.u.VectorUtilPanamaProvider] [laptop] Java vector incubator API enabled; uses preferredBitSize=128",

View File

@ -5,11 +5,8 @@
----
const response = await client.cluster.putSettings({
persistent: {
"cluster.indices.close.enable": false,
"indices.recovery.max_bytes_per_sec": "50mb",
},
transient: {
"*": null,
"cluster.routing.allocation.disk.watermark.low": "90%",
"cluster.routing.allocation.disk.watermark.high": "95%",
},
});
console.log(response);

View File

@ -0,0 +1,46 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
text_similarity_reranker: {
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
query_string: {
query:
"(information retrieval) OR (artificial intelligence)",
default_field: "text",
},
},
},
},
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
field: "text",
inference_id: "my-rerank-model",
inference_text:
"What are the state of the art applications of AI in information retrieval?",
},
},
_source: false,
});
console.log(response);
----

View File

@ -0,0 +1,35 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
query: {
intervals: {
my_text: {
all_of: {
ordered: false,
max_gaps: 1,
intervals: [
{
match: {
query: "my favorite food",
max_gaps: 0,
ordered: true,
},
},
{
match: {
query: "cold porridge",
max_gaps: 4,
ordered: true,
},
},
],
},
},
},
},
});
console.log(response);
----

View File

@ -4,17 +4,18 @@
[source, js]
----
const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "my-elser-endpoint",
task_type: "rerank",
inference_id: "my-elastic-rerank",
inference_config: {
service: "elser",
service: "elasticsearch",
service_settings: {
model_id: ".rerank-v1",
num_threads: 1,
adaptive_allocations: {
enabled: true,
min_number_of_allocations: 3,
min_number_of_allocations: 1,
max_number_of_allocations: 10,
},
num_threads: 1,
},
},
});

View File

@ -4,7 +4,7 @@
[source, js]
----
const response = await client.indices.create({
index: "my-index-000002",
index: "my-index-000003",
mappings: {
properties: {
inference_field: {

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "DELETE",
path: "/_ingest/ip_location/database/my-database-id",
});
console.log(response);
----

View File

@ -7,14 +7,14 @@ const response = await client.indices.create({
index: "test-index",
mappings: {
properties: {
infer_field: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
source_field: {
type: "text",
copy_to: "infer_field",
},
infer_field: {
type: "semantic_text",
inference_id: ".elser-2-elasticsearch",
},
},
},
});

View File

@ -0,0 +1,37 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_sales: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
format: "yyyy-MM-dd",
},
aggs: {
revenue: {
sum: {
field: "taxful_total_price",
},
},
unique_customers: {
cardinality: {
field: "customer_id",
},
},
avg_basket_size: {
avg: {
field: "total_quantity",
},
},
},
},
},
});
console.log(response);
----

View File

@ -12,7 +12,7 @@ const response = await client.ingest.putPipeline({
field: "data",
indexed_chars: 11,
indexed_chars_field: "max_size",
remove_binary: false,
remove_binary: true,
},
},
],

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.bulkUpdateApiKeys({
const response = await client.transport.request({
method: "POST",
path: "/_security/api_key/_bulk_update",
body: {
ids: ["VuaCfGcBCdbkQm-e5aOx", "H3_AhoIBA9hmeQJdg7ij"],
role_descriptors: {

View File

@ -0,0 +1,34 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "POST",
path: "/_inference/chat_completion/openai-completion/_stream",
body: {
messages: [
{
role: "assistant",
content: "Let's find out what the weather is",
tool_calls: [
{
id: "call_KcAjWtAww20AihPHphUh46Gd",
type: "function",
function: {
name: "get_current_weather",
arguments: '{"location":"Boston, MA"}',
},
},
],
},
{
role: "tool",
content: "The weather is cold",
tool_call_id: "call_KcAjWtAww20AihPHphUh46Gd",
},
],
},
});
console.log(response);
----

View File

@ -4,9 +4,11 @@
[source, js]
----
const response = await client.indices.putSettings({
index: "my-index-000001",
index: ".reindexed-v9-ml-anomalies-custom-example",
settings: {
"index.blocks.read_only_allow_delete": null,
index: {
number_of_replicas: 0,
},
},
});
console.log(response);

View File

@ -0,0 +1,12 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.esql.query({
query:
'\nFROM library\n| EVAL year = DATE_EXTRACT("year", release_date)\n| WHERE page_count > ? AND match(author, ?, {"minimum_should_match": ?})\n| LIMIT 5\n',
params: [300, "Frank Herbert", 2],
});
console.log(response);
----

View File

@ -9,7 +9,6 @@ const response = await client.indices.create({
properties: {
content: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
},
},

View File

@ -3,8 +3,8 @@
[source, js]
----
const response = await client.indices.unfreeze({
index: "my-index-000001",
const response = await client.indices.getAlias({
index: ".ml-anomalies-custom-example",
});
console.log(response);
----

View File

@ -0,0 +1,39 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
categories: {
terms: {
field: "category.keyword",
size: 5,
order: {
total_revenue: "desc",
},
},
aggs: {
total_revenue: {
sum: {
field: "taxful_total_price",
},
},
avg_order_value: {
avg: {
field: "taxful_total_price",
},
},
total_items: {
sum: {
field: "total_quantity",
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,17 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "PUT",
path: "/_ingest/ip_location/database/my-database-1",
body: {
name: "GeoIP2-Domain",
maxmind: {
account_id: "1234567",
},
},
});
console.log(response);
----

View File

@ -0,0 +1,42 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.bulk({
index: "jinaai-index",
operations: [
{
index: {
_index: "jinaai-index",
_id: "1",
},
},
{
content:
"Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades.",
},
{
index: {
_index: "jinaai-index",
_id: "2",
},
},
{
content:
"She spends months at a time diving in remote locations, meticulously documenting the intricate relationships between various marine species. ",
},
{
index: {
_index: "jinaai-index",
_id: "3",
},
},
{
content:
"Her dedication to preserving these delicate underwater environments has inspired a new generation of conservationists.",
},
],
});
console.log(response);
----

View File

@ -0,0 +1,13 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.connector.put({
connector_id: "my-{service-name-stub}-connector",
index_name: "my-elasticsearch-index",
name: "Content synced from {service-name}",
service_type: "{service-name-stub}",
});
console.log(response);
----

View File

@ -0,0 +1,32 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ingest.putPipeline({
id: "query_helper_pipeline",
processors: [
{
script: {
source:
"ctx.prompt = 'Please generate an elasticsearch search query on index `articles_index` for the following natural language query. Dates are in the field `@timestamp`, document types are in the field `type` (options are `news`, `publication`), categories in the field `category` and can be multiple (options are `medicine`, `pharmaceuticals`, `technology`), and document names are in the field `title` which should use a fuzzy match. Ignore fields which cannot be determined from the natural language query context: ' + ctx.content",
},
},
{
inference: {
model_id: "openai_chat_completions",
input_output: {
input_field: "prompt",
output_field: "query",
},
},
},
{
remove: {
field: "prompt",
},
},
],
});
console.log(response);
----

View File

@ -0,0 +1,89 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "retrievers_example_nested",
settings: {
number_of_shards: 1,
},
mappings: {
properties: {
nested_field: {
type: "nested",
properties: {
paragraph_id: {
type: "keyword",
},
nested_vector: {
type: "dense_vector",
dims: 3,
similarity: "l2_norm",
index: true,
index_options: {
type: "flat",
},
},
},
},
topic: {
type: "keyword",
},
},
},
});
console.log(response);
const response1 = await client.index({
index: "retrievers_example_nested",
id: 1,
document: {
nested_field: [
{
paragraph_id: "1a",
nested_vector: [-1.12, -0.59, 0.78],
},
{
paragraph_id: "1b",
nested_vector: [-0.12, 1.56, 0.42],
},
{
paragraph_id: "1c",
nested_vector: [1, -1, 0],
},
],
topic: ["ai"],
},
});
console.log(response1);
const response2 = await client.index({
index: "retrievers_example_nested",
id: 2,
document: {
nested_field: [
{
paragraph_id: "2a",
nested_vector: [0.23, 1.24, 0.65],
},
],
topic: ["information_retrieval"],
},
});
console.log(response2);
const response3 = await client.index({
index: "retrievers_example_nested",
id: 3,
document: {
topic: ["ai"],
},
});
console.log(response3);
const response4 = await client.indices.refresh({
index: "retrievers_example_nested",
});
console.log(response4);
----

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-index-000002",
mappings: {
properties: {
inference_field: {
type: "semantic_text",
inference_id: "my-openai-endpoint",
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,37 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
query_string: {
query: "(information retrieval) OR (artificial intelligence)",
default_field: "text",
},
},
},
},
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
});
console.log(response);
----

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "DELETE",
path: "/_ingest/ip_location/database/example-database-id",
});
console.log(response);
----

View File

@ -3,9 +3,9 @@
[source, js]
----
const response = await client.searchApplication.postBehavioralAnalyticsEvent({
collection_name: "my_analytics_collection",
event_type: "search_click",
const response = await client.transport.request({
method: "POST",
path: "/_application/analytics/my_analytics_collection/event/search_click",
body: {
session: {
id: "1797ca95-91c9-4e2e-b1bd-9c38e6f386a9",

Some files were not shown because too many files have changed in this diff Show More