Auto-generated code for 8.15 (#2411)

This commit is contained in:
Elastic Machine
2024-10-28 17:21:16 +01:00
committed by GitHub
parent e47b135e8d
commit fc80b3247d
18 changed files with 249 additions and 10 deletions

View File

@ -0,0 +1,21 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "text_embedding",
inference_id: "watsonx-embeddings",
inference_config: {
service: "watsonxai",
service_settings: {
api_key: "<api_key>",
url: "<url>",
model_id: "ibm/slate-30m-english-rtrvr",
project_id: "<project_id>",
api_version: "2024-03-14",
},
},
});
console.log(response);
----

View File

@ -29,6 +29,7 @@ const response = await client.indices.create({
"arabic_normalization",
"persian_normalization",
"persian_stop",
"persian_stem",
],
},
},

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.index({
index: "amazon-reviews",
id: 1,
document: {
review_text:
"This product is lifechanging! I'm telling all my friends about it.",
review_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
},
});
console.log(response);
----

View File

@ -0,0 +1,14 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.streamInference({
task_type: "completion",
inference_id: "openai-completion",
body: {
input: "What is Elastic?",
},
});
console.log(response);
----

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "small_chunk_size",
inference_config: {
service: "elasticsearch",
service_settings: {
num_allocations: 1,
num_threads: 1,
},
chunking_settings: {
strategy: "sentence",
max_chunk_size: 100,
sentence_overlap: 0,
},
},
});
console.log(response);
----

View File

@ -9,7 +9,6 @@ const response = await client.indices.create({
properties: {
inference_field: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
},
},

View File

@ -0,0 +1,52 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.bulk({
operations: [
{
index: {
_index: "amazon-reviews",
_id: "2",
},
},
{
review_text: "This product is amazing! I love it.",
review_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
},
{
index: {
_index: "amazon-reviews",
_id: "3",
},
},
{
review_text: "This product is terrible. I hate it.",
review_vector: [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],
},
{
index: {
_index: "amazon-reviews",
_id: "4",
},
},
{
review_text: "This product is great. I can do anything with it.",
review_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
},
{
index: {
_index: "amazon-reviews",
_id: "5",
},
},
{
review_text:
"This product has ruined my life and the lives of my family and friends.",
review_vector: [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],
},
],
});
console.log(response);
----

View File

@ -4,7 +4,7 @@
[source, js]
----
const response = await client.indices.create({
index: "my-index-000002",
index: "my-index-000003",
mappings: {
properties: {
inference_field: {

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "my-elser-model",
inference_config: {
service: "elasticsearch",
service_settings: {
adaptive_allocations: {
enabled: true,
min_number_of_allocations: 1,
max_number_of_allocations: 10,
},
num_threads: 1,
model_id: ".elser_model_2",
},
},
});
console.log(response);
----

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "amazon-reviews",
retriever: {
knn: {
field: "review_vector",
query_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
k: 2,
num_candidates: 5,
},
},
});
console.log(response);
----

View File

@ -3,9 +3,10 @@
[source, js]
----
const response = await client.indices.putSettings({
index: ".watches",
settings: {
const response = await client.transport.request({
method: "PUT",
path: "/_watcher/settings",
body: {
"index.routing.allocation.include.role": "watcher",
},
});

View File

@ -0,0 +1,17 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "use_existing_deployment",
inference_config: {
service: "elasticsearch",
service_settings: {
deployment_id: ".elser_model_2",
},
},
});
console.log(response);
----

View File

@ -9,7 +9,6 @@ const response = await client.indices.create({
properties: {
content: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
},
},

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-index-000002",
mappings: {
properties: {
inference_field: {
type: "semantic_text",
inference_id: "my-openai-endpoint",
},
},
},
});
console.log(response);
----

View File

@ -5,10 +5,16 @@
----
const response = await client.indices.create({
index: "idx",
mappings: {
_source: {
mode: "synthetic",
settings: {
index: {
mapping: {
source: {
mode: "synthetic",
},
},
},
},
mappings: {
properties: {
binary: {
type: "binary",

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "amazon-reviews",
mappings: {
properties: {
review_vector: {
type: "dense_vector",
dims: 8,
index: true,
similarity: "cosine",
},
review_text: {
type: "text",
},
},
},
});
console.log(response);
----

View File

@ -58,6 +58,14 @@ const response = await client.simulate.ingest({
composed_of: ["component_template_1", "component_template_2"],
},
},
mapping_addition: {
dynamic: "strict",
properties: {
foo: {
type: "keyword",
},
},
},
},
});
console.log(response);

View File

@ -5,7 +5,7 @@
----
const response = await client.cat.mlTrainedModels({
h: "c,o,l,ct,v",
v: "ture",
v: "true",
});
console.log(response);
----