Auto-generated code for 8.15 (#2411)
This commit is contained in:
21
docs/doc_examples/0e31b8ad176b31028becf9500989bcbd.asciidoc
Normal file
21
docs/doc_examples/0e31b8ad176b31028becf9500989bcbd.asciidoc
Normal file
@ -0,0 +1,21 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "text_embedding",
|
||||
inference_id: "watsonx-embeddings",
|
||||
inference_config: {
|
||||
service: "watsonxai",
|
||||
service_settings: {
|
||||
api_key: "<api_key>",
|
||||
url: "<url>",
|
||||
model_id: "ibm/slate-30m-english-rtrvr",
|
||||
project_id: "<project_id>",
|
||||
api_version: "2024-03-14",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -29,6 +29,7 @@ const response = await client.indices.create({
|
||||
"arabic_normalization",
|
||||
"persian_normalization",
|
||||
"persian_stop",
|
||||
"persian_stem",
|
||||
],
|
||||
},
|
||||
},
|
||||
16
docs/doc_examples/40f287bf733420bbab134b74c7d0ea5d.asciidoc
Normal file
16
docs/doc_examples/40f287bf733420bbab134b74c7d0ea5d.asciidoc
Normal file
@ -0,0 +1,16 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.index({
|
||||
index: "amazon-reviews",
|
||||
id: 1,
|
||||
document: {
|
||||
review_text:
|
||||
"This product is lifechanging! I'm telling all my friends about it.",
|
||||
review_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
14
docs/doc_examples/4b91ad7c9b44e07db4a4e81390f19ad3.asciidoc
Normal file
14
docs/doc_examples/4b91ad7c9b44e07db4a4e81390f19ad3.asciidoc
Normal file
@ -0,0 +1,14 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.streamInference({
|
||||
task_type: "completion",
|
||||
inference_id: "openai-completion",
|
||||
body: {
|
||||
input: "What is Elastic?",
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
23
docs/doc_examples/5ceb734e3affe00e2cdc29af748d95bf.asciidoc
Normal file
23
docs/doc_examples/5ceb734e3affe00e2cdc29af748d95bf.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "sparse_embedding",
|
||||
inference_id: "small_chunk_size",
|
||||
inference_config: {
|
||||
service: "elasticsearch",
|
||||
service_settings: {
|
||||
num_allocations: 1,
|
||||
num_threads: 1,
|
||||
},
|
||||
chunking_settings: {
|
||||
strategy: "sentence",
|
||||
max_chunk_size: 100,
|
||||
sentence_overlap: 0,
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -9,7 +9,6 @@ const response = await client.indices.create({
|
||||
properties: {
|
||||
inference_field: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-elser-endpoint",
|
||||
},
|
||||
},
|
||||
},
|
||||
52
docs/doc_examples/76c73b54f3f1e5cb1c0fcccd7c3fd18e.asciidoc
Normal file
52
docs/doc_examples/76c73b54f3f1e5cb1c0fcccd7c3fd18e.asciidoc
Normal file
@ -0,0 +1,52 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.bulk({
|
||||
operations: [
|
||||
{
|
||||
index: {
|
||||
_index: "amazon-reviews",
|
||||
_id: "2",
|
||||
},
|
||||
},
|
||||
{
|
||||
review_text: "This product is amazing! I love it.",
|
||||
review_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
|
||||
},
|
||||
{
|
||||
index: {
|
||||
_index: "amazon-reviews",
|
||||
_id: "3",
|
||||
},
|
||||
},
|
||||
{
|
||||
review_text: "This product is terrible. I hate it.",
|
||||
review_vector: [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],
|
||||
},
|
||||
{
|
||||
index: {
|
||||
_index: "amazon-reviews",
|
||||
_id: "4",
|
||||
},
|
||||
},
|
||||
{
|
||||
review_text: "This product is great. I can do anything with it.",
|
||||
review_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
|
||||
},
|
||||
{
|
||||
index: {
|
||||
_index: "amazon-reviews",
|
||||
_id: "5",
|
||||
},
|
||||
},
|
||||
{
|
||||
review_text:
|
||||
"This product has ruined my life and the lives of my family and friends.",
|
||||
review_vector: [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1],
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -4,7 +4,7 @@
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-index-000002",
|
||||
index: "my-index-000003",
|
||||
mappings: {
|
||||
properties: {
|
||||
inference_field: {
|
||||
23
docs/doc_examples/7b9691bd34a02dd859562eb927f175e0.asciidoc
Normal file
23
docs/doc_examples/7b9691bd34a02dd859562eb927f175e0.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "sparse_embedding",
|
||||
inference_id: "my-elser-model",
|
||||
inference_config: {
|
||||
service: "elasticsearch",
|
||||
service_settings: {
|
||||
adaptive_allocations: {
|
||||
enabled: true,
|
||||
min_number_of_allocations: 1,
|
||||
max_number_of_allocations: 10,
|
||||
},
|
||||
num_threads: 1,
|
||||
model_id: ".elser_model_2",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
18
docs/doc_examples/7db09cab02d71f3a10d91071216d80fc.asciidoc
Normal file
18
docs/doc_examples/7db09cab02d71f3a10d91071216d80fc.asciidoc
Normal file
@ -0,0 +1,18 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "amazon-reviews",
|
||||
retriever: {
|
||||
knn: {
|
||||
field: "review_vector",
|
||||
query_vector: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
|
||||
k: 2,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,9 +3,10 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.putSettings({
|
||||
index: ".watches",
|
||||
settings: {
|
||||
const response = await client.transport.request({
|
||||
method: "PUT",
|
||||
path: "/_watcher/settings",
|
||||
body: {
|
||||
"index.routing.allocation.include.role": "watcher",
|
||||
},
|
||||
});
|
||||
17
docs/doc_examples/85f9fc6f98e8573efed9b034e853d5ae.asciidoc
Normal file
17
docs/doc_examples/85f9fc6f98e8573efed9b034e853d5ae.asciidoc
Normal file
@ -0,0 +1,17 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "sparse_embedding",
|
||||
inference_id: "use_existing_deployment",
|
||||
inference_config: {
|
||||
service: "elasticsearch",
|
||||
service_settings: {
|
||||
deployment_id: ".elser_model_2",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -9,7 +9,6 @@ const response = await client.indices.create({
|
||||
properties: {
|
||||
content: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-elser-endpoint",
|
||||
},
|
||||
},
|
||||
},
|
||||
18
docs/doc_examples/96e88611f99e6834bd64b58dc8a282c1.asciidoc
Normal file
18
docs/doc_examples/96e88611f99e6834bd64b58dc8a282c1.asciidoc
Normal file
@ -0,0 +1,18 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-index-000002",
|
||||
mappings: {
|
||||
properties: {
|
||||
inference_field: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-openai-endpoint",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -5,10 +5,16 @@
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "idx",
|
||||
mappings: {
|
||||
_source: {
|
||||
mode: "synthetic",
|
||||
settings: {
|
||||
index: {
|
||||
mapping: {
|
||||
source: {
|
||||
mode: "synthetic",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
mappings: {
|
||||
properties: {
|
||||
binary: {
|
||||
type: "binary",
|
||||
23
docs/doc_examples/c8aa8e8c0ac160b8c4efd1ac3b9f48f3.asciidoc
Normal file
23
docs/doc_examples/c8aa8e8c0ac160b8c4efd1ac3b9f48f3.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "amazon-reviews",
|
||||
mappings: {
|
||||
properties: {
|
||||
review_vector: {
|
||||
type: "dense_vector",
|
||||
dims: 8,
|
||||
index: true,
|
||||
similarity: "cosine",
|
||||
},
|
||||
review_text: {
|
||||
type: "text",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -58,6 +58,14 @@ const response = await client.simulate.ingest({
|
||||
composed_of: ["component_template_1", "component_template_2"],
|
||||
},
|
||||
},
|
||||
mapping_addition: {
|
||||
dynamic: "strict",
|
||||
properties: {
|
||||
foo: {
|
||||
type: "keyword",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
@ -5,7 +5,7 @@
|
||||
----
|
||||
const response = await client.cat.mlTrainedModels({
|
||||
h: "c,o,l,ct,v",
|
||||
v: "ture",
|
||||
v: "true",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
Reference in New Issue
Block a user