Compare commits
27 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 42a6fe0f3b | |||
| cdebf1aebf | |||
| 5f7596dd2c | |||
| d97d8fd35c | |||
| 84731411ad | |||
| aa9249bf25 | |||
| c68be6f562 | |||
| b50c2c2e5b | |||
| 586d91effb | |||
| 469c853a10 | |||
| 01f4cf9ba7 | |||
| 85dea32310 | |||
| 528dd6b24a | |||
| d540d7fdb2 | |||
| 07f75a4d9d | |||
| 4e6cbf96aa | |||
| aa7d327d20 | |||
| 6cdb08757d | |||
| 48f369fe82 | |||
| abcdd08b89 | |||
| b3e523ad57 | |||
| dd0a304641 | |||
| 00675bf260 | |||
| 75b7b07b3d | |||
| cc9d8569b2 | |||
| e07b8ebf68 | |||
| e18ba8b7af |
@ -5,3 +5,4 @@ elasticsearch
|
||||
.git
|
||||
lib
|
||||
junit-output
|
||||
.tap
|
||||
|
||||
12
.github/make.sh
vendored
12
.github/make.sh
vendored
@ -150,7 +150,7 @@ if [[ -z "${BUILDKITE+x}" ]] && [[ -z "${CI+x}" ]] && [[ -z "${GITHUB_ACTIONS+x}
|
||||
-u "$(id -u):$(id -g)" \
|
||||
--volume "$repo:/usr/src/elasticsearch-js" \
|
||||
--volume /usr/src/elasticsearch-js/node_modules \
|
||||
--volume "$(realpath $repo/../elastic-client-generator-js):/usr/src/elastic-client-generator-js" \
|
||||
--volume "$(realpath "$repo/../elastic-client-generator-js"):/usr/src/elastic-client-generator-js" \
|
||||
--env "WORKFLOW=$WORKFLOW" \
|
||||
--name make-elasticsearch-js \
|
||||
--rm \
|
||||
@ -159,6 +159,14 @@ if [[ -z "${BUILDKITE+x}" ]] && [[ -z "${CI+x}" ]] && [[ -z "${GITHUB_ACTIONS+x}
|
||||
node .buildkite/make.mjs --task $TASK ${TASK_ARGS[*]}"
|
||||
else
|
||||
echo -e "\033[34;1mINFO: Running in CI mode"
|
||||
|
||||
# determine branch to clone
|
||||
GENERATOR_BRANCH="main"
|
||||
if [[ "$VERSION" == 8.* ]]; then
|
||||
GENERATOR_BRANCH="8.x"
|
||||
fi
|
||||
echo -e "\033[34;1mINFO: Generator branch: $GENERATOR_BRANCH"
|
||||
|
||||
docker run \
|
||||
--volume "$repo:/usr/src/elasticsearch-js" \
|
||||
--volume /usr/src/elasticsearch-js/node_modules \
|
||||
@ -168,7 +176,7 @@ else
|
||||
--rm \
|
||||
$product \
|
||||
/bin/bash -c "cd /usr/src && \
|
||||
git clone https://$CLIENTS_GITHUB_TOKEN@github.com/elastic/elastic-client-generator-js.git && \
|
||||
git clone --branch $GENERATOR_BRANCH https://$CLIENTS_GITHUB_TOKEN@github.com/elastic/elastic-client-generator-js.git && \
|
||||
mkdir -p /usr/src/elastic-client-generator-js/output && \
|
||||
cd /usr/src/elasticsearch-js && \
|
||||
node .buildkite/make.mjs --task $TASK ${TASK_ARGS[*]}"
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -67,3 +67,4 @@ junit-output
|
||||
bun.lockb
|
||||
test-results
|
||||
processinfo
|
||||
.tap
|
||||
|
||||
@ -73,3 +73,4 @@ CONTRIBUTING.md
|
||||
|
||||
src
|
||||
bun.lockb
|
||||
.tap
|
||||
|
||||
@ -1,6 +1,77 @@
|
||||
[[changelog-client]]
|
||||
== Release notes
|
||||
|
||||
[discrete]
|
||||
=== 8.17.1
|
||||
|
||||
[discrete]
|
||||
==== Fixes
|
||||
|
||||
[discrete]
|
||||
===== Improved support for Elasticsearch `v8.17`
|
||||
|
||||
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
|
||||
|
||||
[discrete]
|
||||
===== Report correct transport connection type in telemetry
|
||||
|
||||
The client's telemetry reporting mechanism was incorrectly reporting all traffic as using `HttpConnection` when the default is `UndiciConnection`. https://github.com/elastic/elasticsearch-js/issues/2324[#2324]
|
||||
|
||||
[discrete]
|
||||
=== 8.17.0
|
||||
|
||||
[discrete]
|
||||
==== Features
|
||||
|
||||
[discrete]
|
||||
===== Support for Elasticsearch `v8.17`
|
||||
|
||||
You can find all the API changes
|
||||
https://www.elastic.co/guide/en/elasticsearch/reference/8.17/release-notes-8.17.0.html[here].
|
||||
|
||||
[discrete]
|
||||
=== 8.16.4
|
||||
|
||||
[discrete]
|
||||
==== Fixes
|
||||
|
||||
[discrete]
|
||||
===== Improved support for Elasticsearch `v8.16`
|
||||
|
||||
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
|
||||
|
||||
[discrete]
|
||||
===== Report correct transport connection type in telemetry
|
||||
|
||||
The client's telemetry reporting mechanism was incorrectly reporting all traffic as using `HttpConnection` when the default is `UndiciConnection`. https://github.com/elastic/elasticsearch-js/issues/2324[#2324]
|
||||
|
||||
[discrete]
|
||||
=== 8.16.3
|
||||
|
||||
[discrete]
|
||||
==== Fixes
|
||||
|
||||
[discrete]
|
||||
===== Improved support for Elasticsearch `v8.16`
|
||||
|
||||
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
|
||||
|
||||
[discrete]
|
||||
=== 8.16.2
|
||||
|
||||
[discrete]
|
||||
==== Fixes
|
||||
|
||||
[discrete]
|
||||
===== Improved support for Elasticsearch `v8.16`
|
||||
|
||||
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
|
||||
|
||||
[discrete]
|
||||
===== Drop testing artifacts from npm package
|
||||
|
||||
Tap, the unit testing tool used by this project, was recently upgraded and started writing to a `.tap` directory. Since tests are run prior to an `npm publish` in CI, this directory was being included in the published package and bloating its size.
|
||||
|
||||
[discrete]
|
||||
=== 8.16.1
|
||||
|
||||
@ -37,11 +108,27 @@ The ES|QL helper can now return results as an Apache Arrow `Table` or `RecordBat
|
||||
|
||||
The client's `disablePrototypePoisoningProtection` option was set to `true` by default, but when it was set to any other value it was ignored, making it impossible to enable prototype poisoning protection without providing a custom serializer implementation.
|
||||
|
||||
[discrete]
|
||||
=== 8.15.3
|
||||
|
||||
[discrete]
|
||||
==== Fixes
|
||||
|
||||
[discrete]
|
||||
===== Improved support for Elasticsearch `v8.15`
|
||||
|
||||
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
|
||||
|
||||
[discrete]
|
||||
===== Drop testing artifacts from npm package
|
||||
|
||||
Tap, the unit testing tool, was recently upgraded and started writing to a `.tap` directory. Since tests are run prior to an `npm publish` in CI, this directory was being included in the published package and bloating its size.
|
||||
|
||||
[discrete]
|
||||
=== 8.15.2
|
||||
|
||||
[discrete]
|
||||
==== Features
|
||||
==== Fixes
|
||||
|
||||
[discrete]
|
||||
===== Improved support for Elasticsearch `v8.15`
|
||||
@ -52,7 +139,7 @@ Updated TypeScript types based on fixes and improvements to the Elasticsearch sp
|
||||
=== 8.15.1
|
||||
|
||||
[discrete]
|
||||
==== Features
|
||||
==== Fixes
|
||||
|
||||
[discrete]
|
||||
===== Improved support for Elasticsearch `v8.15`
|
||||
|
||||
11
docs/doc_examples/00ad41bde67beac991534ae0e04b1296.asciidoc
Normal file
11
docs/doc_examples/00ad41bde67beac991534ae0e04b1296.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.getDataStream({
|
||||
name: "my-data-stream",
|
||||
filter_path: "data_streams.indices.index_name",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
46
docs/doc_examples/015e6e6132b6d6d44bddb06bc3b316ed.asciidoc
Normal file
46
docs/doc_examples/015e6e6132b6d6d44bddb06bc3b316ed.asciidoc
Normal file
@ -0,0 +1,46 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
rrf: {
|
||||
retrievers: [
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
range: {
|
||||
year: {
|
||||
gt: 2023,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
term: {
|
||||
topic: "elastic",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
rank_constant: 1,
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
aggs: {
|
||||
topics: {
|
||||
terms: {
|
||||
field: "topic",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
18
docs/doc_examples/0165d22da5f2fc7678392b31d8eb5566.asciidoc
Normal file
18
docs/doc_examples/0165d22da5f2fc7678392b31d8eb5566.asciidoc
Normal file
@ -0,0 +1,18 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "rerank",
|
||||
inference_id: "my-rerank-model",
|
||||
inference_config: {
|
||||
service: "cohere",
|
||||
service_settings: {
|
||||
model_id: "rerank-english-v3.0",
|
||||
api_key: "{{COHERE_API_KEY}}",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,9 +3,8 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.cluster.getSettings({
|
||||
flat_settings: "true",
|
||||
filter_path: "transient",
|
||||
const response = await client.indices.getMapping({
|
||||
index: "kibana_sample_data_ecommerce",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -11,6 +11,8 @@ const response = await client.indices.putSettings({
|
||||
"index.indexing.slowlog.threshold.index.debug": "2s",
|
||||
"index.indexing.slowlog.threshold.index.trace": "500ms",
|
||||
"index.indexing.slowlog.source": "1000",
|
||||
"index.indexing.slowlog.reformat": true,
|
||||
"index.indexing.slowlog.include.user": true,
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
42
docs/doc_examples/082e78c7a2061a7c4a52b494e5ede0e8.asciidoc
Normal file
42
docs/doc_examples/082e78c7a2061a7c4a52b494e5ede0e8.asciidoc
Normal file
@ -0,0 +1,42 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-rank-vectors-bit",
|
||||
mappings: {
|
||||
properties: {
|
||||
my_vector: {
|
||||
type: "rank_vectors",
|
||||
element_type: "bit",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
|
||||
const response1 = await client.bulk({
|
||||
index: "my-rank-vectors-bit",
|
||||
refresh: "true",
|
||||
operations: [
|
||||
{
|
||||
index: {
|
||||
_id: "1",
|
||||
},
|
||||
},
|
||||
{
|
||||
my_vector: [127, -127, 0, 1, 42],
|
||||
},
|
||||
{
|
||||
index: {
|
||||
_id: "2",
|
||||
},
|
||||
},
|
||||
{
|
||||
my_vector: "8100012a7f",
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response1);
|
||||
----
|
||||
49
docs/doc_examples/0bc6155e0c88062a4d8490da49db3aa8.asciidoc
Normal file
49
docs/doc_examples/0bc6155e0c88062a4d8490da49db3aa8.asciidoc
Normal file
@ -0,0 +1,49 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example_nested",
|
||||
retriever: {
|
||||
rrf: {
|
||||
retrievers: [
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
nested: {
|
||||
path: "nested_field",
|
||||
inner_hits: {
|
||||
name: "nested_vector",
|
||||
_source: false,
|
||||
fields: ["nested_field.paragraph_id"],
|
||||
},
|
||||
query: {
|
||||
knn: {
|
||||
field: "nested_field.nested_vector",
|
||||
query_vector: [1, 0, 0.5],
|
||||
k: 10,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
term: {
|
||||
topic: "ai",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
rank_constant: 1,
|
||||
},
|
||||
},
|
||||
_source: ["topic"],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,8 +3,12 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.asyncQuery({
|
||||
format: "json",
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_query/async",
|
||||
querystring: {
|
||||
format: "json",
|
||||
},
|
||||
body: {
|
||||
query:
|
||||
"\n FROM my-index-000001,cluster_one:my-index-000001,cluster_two:my-index*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",
|
||||
|
||||
@ -10,7 +10,7 @@ const response = await client.ingest.putPipeline({
|
||||
{
|
||||
attachment: {
|
||||
field: "data",
|
||||
remove_binary: false,
|
||||
remove_binary: true,
|
||||
},
|
||||
},
|
||||
],
|
||||
57
docs/doc_examples/0d689ac6e78be5d438f9b5d441be2b44.asciidoc
Normal file
57
docs/doc_examples/0d689ac6e78be5d438f9b5d441be2b44.asciidoc
Normal file
@ -0,0 +1,57 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
rrf: {
|
||||
retrievers: [
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
term: {
|
||||
topic: "elastic",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
rrf: {
|
||||
retrievers: [
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
query_string: {
|
||||
query:
|
||||
"(information retrieval) OR (artificial intelligence)",
|
||||
default_field: "text",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [0.23, 0.67, 0.89],
|
||||
k: 3,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
rank_constant: 1,
|
||||
},
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
rank_constant: 1,
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
size: 1,
|
||||
explain: true,
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,8 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.searchApplication.renderQuery({
|
||||
name: "my-app",
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_application/search_application/my-app/_render_query",
|
||||
body: {
|
||||
params: {
|
||||
query_string: "my first query",
|
||||
|
||||
@ -1,15 +0,0 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.cluster.putSettings({
|
||||
persistent: {
|
||||
"cluster.routing.allocation.disk.watermark.low": "100gb",
|
||||
"cluster.routing.allocation.disk.watermark.high": "50gb",
|
||||
"cluster.routing.allocation.disk.watermark.flood_stage": "10gb",
|
||||
"cluster.info.update.interval": "1m",
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
15
docs/doc_examples/0f028f71f04c1d569fab402869565a84.asciidoc
Normal file
15
docs/doc_examples/0f028f71f04c1d569fab402869565a84.asciidoc
Normal file
@ -0,0 +1,15 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.putSettings({
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
settings: {
|
||||
index: {
|
||||
number_of_replicas: "<original_number_of_replicas>",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
20
docs/doc_examples/120fcf9f55128d6a81d5e87a9c235bbd.asciidoc
Normal file
20
docs/doc_examples/120fcf9f55128d6a81d5e87a9c235bbd.asciidoc
Normal file
@ -0,0 +1,20 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_inference/chat_completion/openai-completion/_stream",
|
||||
body: {
|
||||
model: "gpt-4o",
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: "What is Elastic?",
|
||||
},
|
||||
],
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
11
docs/doc_examples/12adea5d76f73d94d80d42f53f67563f.asciidoc
Normal file
11
docs/doc_examples/12adea5d76f73d94d80d42f53f67563f.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.addBlock({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
block: "read_only",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,11 +3,13 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.inference({
|
||||
const response = await client.inference.put({
|
||||
task_type: "my-inference-endpoint",
|
||||
inference_id: "_update",
|
||||
service_settings: {
|
||||
api_key: "<API_KEY>",
|
||||
inference_config: {
|
||||
service_settings: {
|
||||
api_key: "<API_KEY>",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
@ -11,7 +11,7 @@ const response = await client.searchApplication.put({
|
||||
script: {
|
||||
lang: "mustache",
|
||||
source:
|
||||
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n \n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "highlight": {\n "fields": {\n "title": { "fragment_size": 0 },\n "plot": { "fragment_size": 200 }\n }\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
|
||||
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "highlight": {\n "fields": {\n "title": { "fragment_size": 0 },\n "plot": { "fragment_size": 200 }\n }\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
|
||||
params: {
|
||||
query: "",
|
||||
_es_filters: {},
|
||||
|
||||
@ -16,7 +16,7 @@ const response = await client.search({
|
||||
},
|
||||
},
|
||||
field: "text",
|
||||
inference_id: "my-cohere-rerank-model",
|
||||
inference_id: "elastic-rerank",
|
||||
inference_text: "How often does the moon hide the sun?",
|
||||
rank_window_size: 100,
|
||||
min_score: 0.5,
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.simulate.ingest({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_ingest/_simulate",
|
||||
body: {
|
||||
docs: [
|
||||
{
|
||||
|
||||
19
docs/doc_examples/1ead35c954963e83f89872048dabdbe9.asciidoc
Normal file
19
docs/doc_examples/1ead35c954963e83f89872048dabdbe9.asciidoc
Normal file
@ -0,0 +1,19 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.queryRole({
|
||||
query: {
|
||||
bool: {
|
||||
must_not: {
|
||||
term: {
|
||||
"metadata._reserved": true,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
sort: ["name"],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,8 +3,8 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.queryRole({
|
||||
sort: ["name"],
|
||||
const response = await client.indices.rollover({
|
||||
alias: "datastream",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
67
docs/doc_examples/246763219ec06172f7aa57bba28d344a.asciidoc
Normal file
67
docs/doc_examples/246763219ec06172f7aa57bba28d344a.asciidoc
Normal file
@ -0,0 +1,67 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-rank-vectors-bit",
|
||||
mappings: {
|
||||
properties: {
|
||||
my_vector: {
|
||||
type: "rank_vectors",
|
||||
element_type: "bit",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
|
||||
const response1 = await client.bulk({
|
||||
index: "my-rank-vectors-bit",
|
||||
refresh: "true",
|
||||
operations: [
|
||||
{
|
||||
index: {
|
||||
_id: "1",
|
||||
},
|
||||
},
|
||||
{
|
||||
my_vector: [127, -127, 0, 1, 42],
|
||||
},
|
||||
{
|
||||
index: {
|
||||
_id: "2",
|
||||
},
|
||||
},
|
||||
{
|
||||
my_vector: "8100012a7f",
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response1);
|
||||
|
||||
const response2 = await client.search({
|
||||
index: "my-rank-vectors-bit",
|
||||
query: {
|
||||
script_score: {
|
||||
query: {
|
||||
match_all: {},
|
||||
},
|
||||
script: {
|
||||
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
|
||||
params: {
|
||||
query_vector: [
|
||||
[
|
||||
0.35, 0.77, 0.95, 0.15, 0.11, 0.08, 0.58, 0.06, 0.44, 0.52, 0.21,
|
||||
0.62, 0.65, 0.16, 0.64, 0.39, 0.93, 0.06, 0.93, 0.31, 0.92, 0,
|
||||
0.66, 0.86, 0.92, 0.03, 0.81, 0.31, 0.2, 0.92, 0.95, 0.64, 0.19,
|
||||
0.26, 0.77, 0.64, 0.78, 0.32, 0.97, 0.84,
|
||||
],
|
||||
],
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response2);
|
||||
----
|
||||
@ -1,28 +0,0 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.query({
|
||||
format: "txt",
|
||||
query:
|
||||
"\n FROM library\n | SORT page_count DESC\n | KEEP name, author\n | LOOKUP era ON author\n | LIMIT 5\n ",
|
||||
tables: {
|
||||
era: {
|
||||
author: {
|
||||
keyword: [
|
||||
"Frank Herbert",
|
||||
"Peter F. Hamilton",
|
||||
"Vernor Vinge",
|
||||
"Alastair Reynolds",
|
||||
"James S.A. Corey",
|
||||
],
|
||||
},
|
||||
era: {
|
||||
keyword: ["The New Wave", "Diamond", "Diamond", "Diamond", "Hadron"],
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
11
docs/doc_examples/272e27bf1fcc4fe5dbd4092679dd0342.asciidoc
Normal file
11
docs/doc_examples/272e27bf1fcc4fe5dbd4092679dd0342.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.addBlock({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
block: "write",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.oidcLogout({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_security/oidc/logout",
|
||||
body: {
|
||||
token:
|
||||
"dGhpcyBpcyBub3QgYSByZWFsIHRva2VuIGJ1dCBpdCBpcyBvbmx5IHRlc3QgZGF0YS4gZG8gbm90IHRyeSB0byByZWFkIHRva2VuIQ==",
|
||||
|
||||
26
docs/doc_examples/2a21674c40f9b182a8944769d20b2357.asciidoc
Normal file
26
docs/doc_examples/2a21674c40f9b182a8944769d20b2357.asciidoc
Normal file
@ -0,0 +1,26 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "my-rank-vectors-float",
|
||||
query: {
|
||||
script_score: {
|
||||
query: {
|
||||
match_all: {},
|
||||
},
|
||||
script: {
|
||||
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
|
||||
params: {
|
||||
query_vector: [
|
||||
[0.5, 10, 6],
|
||||
[-0.5, 10, 10],
|
||||
],
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
35
docs/doc_examples/2a67608dadbf220a2f040f3a79d3677d.asciidoc
Normal file
35
docs/doc_examples/2a67608dadbf220a2f040f3a79d3677d.asciidoc
Normal file
@ -0,0 +1,35 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.ingest.putPipeline({
|
||||
id: "attachment",
|
||||
description: "Extract attachment information including original binary",
|
||||
processors: [
|
||||
{
|
||||
attachment: {
|
||||
field: "data",
|
||||
remove_binary: false,
|
||||
},
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
|
||||
const response1 = await client.index({
|
||||
index: "my-index-000001",
|
||||
id: "my_id",
|
||||
pipeline: "attachment",
|
||||
document: {
|
||||
data: "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0=",
|
||||
},
|
||||
});
|
||||
console.log(response1);
|
||||
|
||||
const response2 = await client.get({
|
||||
index: "my-index-000001",
|
||||
id: "my_id",
|
||||
});
|
||||
console.log(response2);
|
||||
----
|
||||
24
docs/doc_examples/2afd49985950cbcccf727fa858d00067.asciidoc
Normal file
24
docs/doc_examples/2afd49985950cbcccf727fa858d00067.asciidoc
Normal file
@ -0,0 +1,24 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "test-index",
|
||||
query: {
|
||||
match: {
|
||||
my_field: "Which country is Paris in?",
|
||||
},
|
||||
},
|
||||
highlight: {
|
||||
fields: {
|
||||
my_field: {
|
||||
type: "semantic",
|
||||
number_of_fragments: 2,
|
||||
order: "score",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,10 +3,12 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.asyncQueryGet({
|
||||
id: "FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
|
||||
wait_for_completion_timeout: "30s",
|
||||
body: null,
|
||||
const response = await client.transport.request({
|
||||
method: "GET",
|
||||
path: "/_query/async/FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
|
||||
querystring: {
|
||||
wait_for_completion_timeout: "30s",
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
|
||||
23
docs/doc_examples/2f72a63c73dd672ac2dc3997ad15dd41.asciidoc
Normal file
23
docs/doc_examples/2f72a63c73dd672ac2dc3997ad15dd41.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "test-index",
|
||||
mappings: {
|
||||
properties: {
|
||||
source_field: {
|
||||
type: "text",
|
||||
fields: {
|
||||
infer_field: {
|
||||
type: "semantic_text",
|
||||
inference_id: ".elser-2-elasticsearch",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
23
docs/doc_examples/30d051f534aeb884176eedb2c11dac85.asciidoc
Normal file
23
docs/doc_examples/30d051f534aeb884176eedb2c11dac85.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "rerank",
|
||||
inference_id: "my-elastic-rerank",
|
||||
inference_config: {
|
||||
service: "elasticsearch",
|
||||
service_settings: {
|
||||
model_id: ".rerank-v1",
|
||||
num_threads: 1,
|
||||
adaptive_allocations: {
|
||||
enabled: true,
|
||||
min_number_of_allocations: 1,
|
||||
max_number_of_allocations: 4,
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
28
docs/doc_examples/31832bd71c31c46a1ccf8d1c210d89d4.asciidoc
Normal file
28
docs/doc_examples/31832bd71c31c46a1ccf8d1c210d89d4.asciidoc
Normal file
@ -0,0 +1,28 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "my-index-*",
|
||||
query: {
|
||||
bool: {
|
||||
must: [
|
||||
{
|
||||
match: {
|
||||
"user.id": "kimchy",
|
||||
},
|
||||
},
|
||||
],
|
||||
must_not: [
|
||||
{
|
||||
terms: {
|
||||
_index: ["my-index-01"],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
31
docs/doc_examples/32c8c86702ccd68eb70f1573409c2a1f.asciidoc
Normal file
31
docs/doc_examples/32c8c86702ccd68eb70f1573409c2a1f.asciidoc
Normal file
@ -0,0 +1,31 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.ilm.putLifecycle({
|
||||
name: "my_policy",
|
||||
policy: {
|
||||
phases: {
|
||||
hot: {
|
||||
actions: {
|
||||
rollover: {
|
||||
max_primary_shard_size: "50gb",
|
||||
},
|
||||
searchable_snapshot: {
|
||||
snapshot_repository: "backing_repo",
|
||||
replicate_for: "14d",
|
||||
},
|
||||
},
|
||||
},
|
||||
delete: {
|
||||
min_age: "28d",
|
||||
actions: {
|
||||
delete: {},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -14,6 +14,7 @@ const response = await client.indices.putSettings({
|
||||
"index.search.slowlog.threshold.fetch.info": "800ms",
|
||||
"index.search.slowlog.threshold.fetch.debug": "500ms",
|
||||
"index.search.slowlog.threshold.fetch.trace": "200ms",
|
||||
"index.search.slowlog.include.user": true,
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
70
docs/doc_examples/36792c81c053e0555407d1e83e7e054f.asciidoc
Normal file
70
docs/doc_examples/36792c81c053e0555407d1e83e7e054f.asciidoc
Normal file
@ -0,0 +1,70 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "movies",
|
||||
size: 10,
|
||||
retriever: {
|
||||
rescorer: {
|
||||
rescore: {
|
||||
window_size: 50,
|
||||
query: {
|
||||
rescore_query: {
|
||||
script_score: {
|
||||
query: {
|
||||
match_all: {},
|
||||
},
|
||||
script: {
|
||||
source:
|
||||
"cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
|
||||
params: {
|
||||
queryVector: [-0.5, 90, -10, 14.8, -156],
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
retriever: {
|
||||
rrf: {
|
||||
rank_window_size: 100,
|
||||
retrievers: [
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
sparse_vector: {
|
||||
field: "plot_embedding",
|
||||
inference_id: "my-elser-model",
|
||||
query: "films that explore psychological depths",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
multi_match: {
|
||||
query: "crime",
|
||||
fields: ["plot", "title"],
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [10, 22, 77],
|
||||
k: 10,
|
||||
num_candidates: 10,
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
23
docs/doc_examples/3722dad876023e0757138dd5a6d3240e.asciidoc
Normal file
23
docs/doc_examples/3722dad876023e0757138dd5a6d3240e.asciidoc
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-index",
|
||||
settings: {
|
||||
index: {
|
||||
number_of_shards: 3,
|
||||
"blocks.write": true,
|
||||
},
|
||||
},
|
||||
mappings: {
|
||||
properties: {
|
||||
field1: {
|
||||
type: "text",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -1,23 +0,0 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.bulk({
|
||||
index: "test-index",
|
||||
operations: [
|
||||
{
|
||||
update: {
|
||||
_id: "1",
|
||||
},
|
||||
},
|
||||
{
|
||||
doc: {
|
||||
infer_field: "updated inference field",
|
||||
source_field: "updated source field",
|
||||
},
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
19
docs/doc_examples/3a204b57072a104d9b50f3a9e064a8f6.asciidoc
Normal file
19
docs/doc_examples/3a204b57072a104d9b50f3a9e064a8f6.asciidoc
Normal file
@ -0,0 +1,19 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
size: 0,
|
||||
aggs: {
|
||||
job_ids: {
|
||||
terms: {
|
||||
field: "job_id",
|
||||
size: 100,
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
61
docs/doc_examples/3bc4a3681e3ea9cb3de49f72085807d8.asciidoc
Normal file
61
docs/doc_examples/3bc4a3681e3ea9cb3de49f72085807d8.asciidoc
Normal file
@ -0,0 +1,61 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
linear: {
|
||||
retrievers: [
|
||||
{
|
||||
retriever: {
|
||||
standard: {
|
||||
query: {
|
||||
function_score: {
|
||||
query: {
|
||||
term: {
|
||||
topic: "ai",
|
||||
},
|
||||
},
|
||||
functions: [
|
||||
{
|
||||
script_score: {
|
||||
script: {
|
||||
source: "doc['timestamp'].value.millis",
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
boost_mode: "replace",
|
||||
},
|
||||
},
|
||||
sort: {
|
||||
timestamp: {
|
||||
order: "asc",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
weight: 2,
|
||||
normalizer: "minmax",
|
||||
},
|
||||
{
|
||||
retriever: {
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [0.23, 0.67, 0.89],
|
||||
k: 3,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
weight: 1.5,
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
16
docs/doc_examples/3ea4c971b3f47735dcc207ee2645fa03.asciidoc
Normal file
16
docs/doc_examples/3ea4c971b3f47735dcc207ee2645fa03.asciidoc
Normal file
@ -0,0 +1,16 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.updateAliases({
|
||||
actions: [
|
||||
{
|
||||
remove_index: {
|
||||
index: "my-index-2099.05.06-000001",
|
||||
},
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.asyncQuery({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_query/async",
|
||||
body: {
|
||||
query:
|
||||
"\n FROM library\n | EVAL year = DATE_TRUNC(1 YEARS, release_date)\n | STATS MAX(page_count) BY year\n | SORT year\n | LIMIT 5\n ",
|
||||
|
||||
18
docs/doc_examples/3f9dcf2aa42f3ecfb5ebfe48c1774103.asciidoc
Normal file
18
docs/doc_examples/3f9dcf2aa42f3ecfb5ebfe48c1774103.asciidoc
Normal file
@ -0,0 +1,18 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "kibana_sample_data_ecommerce",
|
||||
size: 0,
|
||||
aggs: {
|
||||
order_stats: {
|
||||
stats: {
|
||||
field: "taxful_total_price",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,9 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.asyncQueryGet({
|
||||
id: "FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
|
||||
body: null,
|
||||
const response = await client.transport.request({
|
||||
method: "GET",
|
||||
path: "/_query/async/FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
|
||||
@ -4,16 +4,12 @@
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "semantic-embeddings",
|
||||
index: "jinaai-index",
|
||||
mappings: {
|
||||
properties: {
|
||||
semantic_text: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-elser-endpoint",
|
||||
},
|
||||
content: {
|
||||
type: "text",
|
||||
copy_to: "semantic_text",
|
||||
type: "semantic_text",
|
||||
inference_id: "jinaai-embeddings",
|
||||
},
|
||||
},
|
||||
},
|
||||
47
docs/doc_examples/45954b8aaedfed57012be8b6538b0a24.asciidoc
Normal file
47
docs/doc_examples/45954b8aaedfed57012be8b6538b0a24.asciidoc
Normal file
@ -0,0 +1,47 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_inference/chat_completion/openai-completion/_stream",
|
||||
body: {
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: "What's the price of a scarf?",
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
tools: [
|
||||
{
|
||||
type: "function",
|
||||
function: {
|
||||
name: "get_current_price",
|
||||
description: "Get the current price of a item",
|
||||
parameters: {
|
||||
type: "object",
|
||||
properties: {
|
||||
item: {
|
||||
id: "123",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
],
|
||||
tool_choice: {
|
||||
type: "function",
|
||||
function: {
|
||||
name: "get_current_price",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -10,7 +10,8 @@ const response = await client.inference.put({
|
||||
service: "openai",
|
||||
service_settings: {
|
||||
api_key: "<api_key>",
|
||||
model_id: "text-embedding-ada-002",
|
||||
model_id: "text-embedding-3-small",
|
||||
dimensions: 128,
|
||||
},
|
||||
},
|
||||
});
|
||||
@ -3,9 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.streamInference({
|
||||
task_type: "completion",
|
||||
inference_id: "openai-completion",
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_inference/completion/openai-completion/_stream",
|
||||
body: {
|
||||
input: "What is Elastic?",
|
||||
},
|
||||
|
||||
17
docs/doc_examples/4de4bb55bbc0a76c75d256f245a3ee3f.asciidoc
Normal file
17
docs/doc_examples/4de4bb55bbc0a76c75d256f245a3ee3f.asciidoc
Normal file
@ -0,0 +1,17 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "sparse_embedding",
|
||||
inference_id: "elser-model-eis",
|
||||
inference_config: {
|
||||
service: "elastic",
|
||||
service_settings: {
|
||||
model_name: "elser",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -8,11 +8,6 @@ const response = await client.search({
|
||||
query: {
|
||||
bool: {
|
||||
must: [
|
||||
{
|
||||
term: {
|
||||
"category.keyword": "Main Course",
|
||||
},
|
||||
},
|
||||
{
|
||||
term: {
|
||||
tags: "vegetarian",
|
||||
@ -27,6 +22,11 @@ const response = await client.search({
|
||||
},
|
||||
],
|
||||
should: [
|
||||
{
|
||||
term: {
|
||||
category: "Main Course",
|
||||
},
|
||||
},
|
||||
{
|
||||
multi_match: {
|
||||
query: "curry spicy",
|
||||
@ -3,15 +3,18 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.knnSearch({
|
||||
index: "my-index",
|
||||
const response = await client.search({
|
||||
index: "image-index",
|
||||
knn: {
|
||||
field: "image_vector",
|
||||
query_vector: [0.3, 0.1, 1.2],
|
||||
field: "image-vector",
|
||||
query_vector: [-5, 9, -12],
|
||||
k: 10,
|
||||
num_candidates: 100,
|
||||
rescore_vector: {
|
||||
oversample: 2,
|
||||
},
|
||||
},
|
||||
_source: ["name", "file_type"],
|
||||
fields: ["title", "file-type"],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -5,7 +5,7 @@
|
||||
----
|
||||
const response = await client.cluster.putSettings({
|
||||
persistent: {
|
||||
"cluster.routing.allocation.disk.watermark.low": "30gb",
|
||||
"migrate.data_stream_reindex_max_request_per_second": 10000,
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
18
docs/doc_examples/53d9d2ec9cb8d211772d764e76fe6890.asciidoc
Normal file
18
docs/doc_examples/53d9d2ec9cb8d211772d764e76fe6890.asciidoc
Normal file
@ -0,0 +1,18 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.ingest.simulate({
|
||||
id: "query_helper_pipeline",
|
||||
docs: [
|
||||
{
|
||||
_source: {
|
||||
content:
|
||||
"artificial intelligence in medicine articles published in the last 12 months",
|
||||
},
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.oidcPrepareAuthentication({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_security/oidc/prepare",
|
||||
body: {
|
||||
realm: "oidc1",
|
||||
state: "lGYK0EcSLjqH6pkT5EVZjC6eIW5YCGgywj2sxROO",
|
||||
|
||||
16
docs/doc_examples/5836b09198feb1269ed12839b416123d.asciidoc
Normal file
16
docs/doc_examples/5836b09198feb1269ed12839b416123d.asciidoc
Normal file
@ -0,0 +1,16 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "jinaai-index",
|
||||
query: {
|
||||
semantic: {
|
||||
field: "content",
|
||||
query: "who inspired taking care of the sea?",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
10
docs/doc_examples/59aa5216630f80c5dc298fc5bba4a819.asciidoc
Normal file
10
docs/doc_examples/59aa5216630f80c5dc298fc5bba4a819.asciidoc
Normal file
@ -0,0 +1,10 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.getSettings({
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,8 +3,12 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.asyncQuery({
|
||||
format: "json",
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_query/async",
|
||||
querystring: {
|
||||
format: "json",
|
||||
},
|
||||
body: {
|
||||
query:
|
||||
"\n FROM cluster_one:my-index*,cluster_two:logs*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",
|
||||
|
||||
@ -9,7 +9,6 @@ const response = await client.indices.create({
|
||||
properties: {
|
||||
inference_field: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-elser-endpoint",
|
||||
},
|
||||
},
|
||||
},
|
||||
@ -45,7 +45,7 @@ console.log(response);
|
||||
|
||||
const response1 = await client.indices.putIndexTemplate({
|
||||
name: 2,
|
||||
index_patterns: ["k8s*"],
|
||||
index_patterns: ["k9s*"],
|
||||
composed_of: ["destination_template"],
|
||||
data_stream: {},
|
||||
});
|
||||
@ -4,9 +4,11 @@
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.putSettings({
|
||||
index: "my-index-000001",
|
||||
index: "*",
|
||||
settings: {
|
||||
"index.search.slowlog.include.user": true,
|
||||
"index.search.slowlog.threshold.fetch.warn": "30s",
|
||||
"index.search.slowlog.threshold.query.warn": "30s",
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
@ -11,7 +11,7 @@ const response = await client.searchApplication.put({
|
||||
script: {
|
||||
lang: "mustache",
|
||||
source:
|
||||
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n \n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
|
||||
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
|
||||
params: {
|
||||
query: "",
|
||||
_es_filters: {},
|
||||
|
||||
@ -6,14 +6,15 @@
|
||||
const response = await client.search({
|
||||
index: "test-index",
|
||||
query: {
|
||||
nested: {
|
||||
path: "inference_field.inference.chunks",
|
||||
query: {
|
||||
sparse_vector: {
|
||||
field: "inference_field.inference.chunks.embeddings",
|
||||
inference_id: "my-inference-id",
|
||||
query: "mountain lake",
|
||||
},
|
||||
match: {
|
||||
my_semantic_field: "Which country is Paris in?",
|
||||
},
|
||||
},
|
||||
highlight: {
|
||||
fields: {
|
||||
my_semantic_field: {
|
||||
number_of_fragments: 2,
|
||||
order: "score",
|
||||
},
|
||||
},
|
||||
},
|
||||
16
docs/doc_examples/6e498b9dc753b94abf2618c407fa5cd8.asciidoc
Normal file
16
docs/doc_examples/6e498b9dc753b94abf2618c407fa5cd8.asciidoc
Normal file
@ -0,0 +1,16 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.reindex({
|
||||
wait_for_completion: "false",
|
||||
source: {
|
||||
index: ".ml-anomalies-custom-example",
|
||||
},
|
||||
dest: {
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.bulkUpdateApiKeys({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_security/api_key/_bulk_update",
|
||||
body: {
|
||||
ids: ["VuaCfGcBCdbkQm-e5aOx", "H3_AhoIBA9hmeQJdg7ij"],
|
||||
},
|
||||
|
||||
@ -12,6 +12,13 @@ const response = await client.search({
|
||||
fields: ["my_field", "my_field._2gram", "my_field._3gram"],
|
||||
},
|
||||
},
|
||||
highlight: {
|
||||
fields: {
|
||||
my_field: {
|
||||
matched_fields: ["my_field._index_prefix"],
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
24
docs/doc_examples/730045fae3743c39b612813a42c330c3.asciidoc
Normal file
24
docs/doc_examples/730045fae3743c39b612813a42c330c3.asciidoc
Normal file
@ -0,0 +1,24 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "my-index-000001",
|
||||
query: {
|
||||
prefix: {
|
||||
full_name: {
|
||||
value: "ki",
|
||||
},
|
||||
},
|
||||
},
|
||||
highlight: {
|
||||
fields: {
|
||||
full_name: {
|
||||
matched_fields: ["full_name._index_prefix"],
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
33
docs/doc_examples/7478ff69113fb53f41ea07cdf911fa67.asciidoc
Normal file
33
docs/doc_examples/7478ff69113fb53f41ea07cdf911fa67.asciidoc
Normal file
@ -0,0 +1,33 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "kibana_sample_data_ecommerce",
|
||||
size: 0,
|
||||
aggs: {
|
||||
daily_sales: {
|
||||
date_histogram: {
|
||||
field: "order_date",
|
||||
calendar_interval: "day",
|
||||
},
|
||||
aggs: {
|
||||
daily_revenue: {
|
||||
sum: {
|
||||
field: "taxful_total_price",
|
||||
},
|
||||
},
|
||||
smoothed_revenue: {
|
||||
moving_fn: {
|
||||
buckets_path: "daily_revenue",
|
||||
window: 3,
|
||||
script: "MovingFunctions.unweightedAvg(values)",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -1,26 +0,0 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "test-index",
|
||||
query: {
|
||||
nested: {
|
||||
path: "inference_field.inference.chunks",
|
||||
query: {
|
||||
knn: {
|
||||
field: "inference_field.inference.chunks.embeddings",
|
||||
query_vector_builder: {
|
||||
text_embedding: {
|
||||
model_id: "my_inference_id",
|
||||
model_text: "mountain lake",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
44
docs/doc_examples/76e02434835630cb830724beb92df354.asciidoc
Normal file
44
docs/doc_examples/76e02434835630cb830724beb92df354.asciidoc
Normal file
@ -0,0 +1,44 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
rrf: {
|
||||
retrievers: [
|
||||
{
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [0.23, 0.67, 0.89],
|
||||
k: 3,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
{
|
||||
text_similarity_reranker: {
|
||||
retriever: {
|
||||
standard: {
|
||||
query: {
|
||||
term: {
|
||||
topic: "ai",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
field: "text",
|
||||
inference_id: "my-rerank-model",
|
||||
inference_text:
|
||||
"Can I use generative AI to identify user intent and improve search relevance?",
|
||||
},
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
rank_constant: 1,
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.textStructure.findMessageStructure({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_text_structure/find_message_structure",
|
||||
body: {
|
||||
messages: [
|
||||
"[2024-03-05T10:52:36,256][INFO ][o.a.l.u.VectorUtilPanamaProvider] [laptop] Java vector incubator API enabled; uses preferredBitSize=128",
|
||||
|
||||
@ -5,11 +5,8 @@
|
||||
----
|
||||
const response = await client.cluster.putSettings({
|
||||
persistent: {
|
||||
"cluster.indices.close.enable": false,
|
||||
"indices.recovery.max_bytes_per_sec": "50mb",
|
||||
},
|
||||
transient: {
|
||||
"*": null,
|
||||
"cluster.routing.allocation.disk.watermark.low": "90%",
|
||||
"cluster.routing.allocation.disk.watermark.high": "95%",
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
46
docs/doc_examples/78043831fd32004a82930c8ac8a1d809.asciidoc
Normal file
46
docs/doc_examples/78043831fd32004a82930c8ac8a1d809.asciidoc
Normal file
@ -0,0 +1,46 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
text_similarity_reranker: {
|
||||
retriever: {
|
||||
rrf: {
|
||||
retrievers: [
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
query_string: {
|
||||
query:
|
||||
"(information retrieval) OR (artificial intelligence)",
|
||||
default_field: "text",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [0.23, 0.67, 0.89],
|
||||
k: 3,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
rank_constant: 1,
|
||||
},
|
||||
},
|
||||
field: "text",
|
||||
inference_id: "my-rerank-model",
|
||||
inference_text:
|
||||
"What are the state of the art applications of AI in information retrieval?",
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
35
docs/doc_examples/790684b45bef2bb848ea932f0fd0cfbd.asciidoc
Normal file
35
docs/doc_examples/790684b45bef2bb848ea932f0fd0cfbd.asciidoc
Normal file
@ -0,0 +1,35 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
query: {
|
||||
intervals: {
|
||||
my_text: {
|
||||
all_of: {
|
||||
ordered: false,
|
||||
max_gaps: 1,
|
||||
intervals: [
|
||||
{
|
||||
match: {
|
||||
query: "my favorite food",
|
||||
max_gaps: 0,
|
||||
ordered: true,
|
||||
},
|
||||
},
|
||||
{
|
||||
match: {
|
||||
query: "cold porridge",
|
||||
max_gaps: 4,
|
||||
ordered: true,
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -4,17 +4,18 @@
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.inference.put({
|
||||
task_type: "sparse_embedding",
|
||||
inference_id: "my-elser-endpoint",
|
||||
task_type: "rerank",
|
||||
inference_id: "my-elastic-rerank",
|
||||
inference_config: {
|
||||
service: "elser",
|
||||
service: "elasticsearch",
|
||||
service_settings: {
|
||||
model_id: ".rerank-v1",
|
||||
num_threads: 1,
|
||||
adaptive_allocations: {
|
||||
enabled: true,
|
||||
min_number_of_allocations: 3,
|
||||
min_number_of_allocations: 1,
|
||||
max_number_of_allocations: 10,
|
||||
},
|
||||
num_threads: 1,
|
||||
},
|
||||
},
|
||||
});
|
||||
@ -4,7 +4,7 @@
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-index-000002",
|
||||
index: "my-index-000003",
|
||||
mappings: {
|
||||
properties: {
|
||||
inference_field: {
|
||||
11
docs/doc_examples/7ba29f0be2297b54a640b0a17d7ef5ca.asciidoc
Normal file
11
docs/doc_examples/7ba29f0be2297b54a640b0a17d7ef5ca.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.transport.request({
|
||||
method: "DELETE",
|
||||
path: "/_ingest/ip_location/database/my-database-id",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -7,14 +7,14 @@ const response = await client.indices.create({
|
||||
index: "test-index",
|
||||
mappings: {
|
||||
properties: {
|
||||
infer_field: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-elser-endpoint",
|
||||
},
|
||||
source_field: {
|
||||
type: "text",
|
||||
copy_to: "infer_field",
|
||||
},
|
||||
infer_field: {
|
||||
type: "semantic_text",
|
||||
inference_id: ".elser-2-elasticsearch",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
37
docs/doc_examples/7dd0d9cc6c5982a2c003d301e90feeba.asciidoc
Normal file
37
docs/doc_examples/7dd0d9cc6c5982a2c003d301e90feeba.asciidoc
Normal file
@ -0,0 +1,37 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "kibana_sample_data_ecommerce",
|
||||
size: 0,
|
||||
aggs: {
|
||||
daily_sales: {
|
||||
date_histogram: {
|
||||
field: "order_date",
|
||||
calendar_interval: "day",
|
||||
format: "yyyy-MM-dd",
|
||||
},
|
||||
aggs: {
|
||||
revenue: {
|
||||
sum: {
|
||||
field: "taxful_total_price",
|
||||
},
|
||||
},
|
||||
unique_customers: {
|
||||
cardinality: {
|
||||
field: "customer_id",
|
||||
},
|
||||
},
|
||||
avg_basket_size: {
|
||||
avg: {
|
||||
field: "total_quantity",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -12,7 +12,7 @@ const response = await client.ingest.putPipeline({
|
||||
field: "data",
|
||||
indexed_chars: 11,
|
||||
indexed_chars_field: "max_size",
|
||||
remove_binary: false,
|
||||
remove_binary: true,
|
||||
},
|
||||
},
|
||||
],
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.bulkUpdateApiKeys({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_security/api_key/_bulk_update",
|
||||
body: {
|
||||
ids: ["VuaCfGcBCdbkQm-e5aOx", "H3_AhoIBA9hmeQJdg7ij"],
|
||||
role_descriptors: {
|
||||
|
||||
34
docs/doc_examples/82bb6c61dab959f4446dc5ecab7ecbdf.asciidoc
Normal file
34
docs/doc_examples/82bb6c61dab959f4446dc5ecab7ecbdf.asciidoc
Normal file
@ -0,0 +1,34 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_inference/chat_completion/openai-completion/_stream",
|
||||
body: {
|
||||
messages: [
|
||||
{
|
||||
role: "assistant",
|
||||
content: "Let's find out what the weather is",
|
||||
tool_calls: [
|
||||
{
|
||||
id: "call_KcAjWtAww20AihPHphUh46Gd",
|
||||
type: "function",
|
||||
function: {
|
||||
name: "get_current_weather",
|
||||
arguments: '{"location":"Boston, MA"}',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
role: "tool",
|
||||
content: "The weather is cold",
|
||||
tool_call_id: "call_KcAjWtAww20AihPHphUh46Gd",
|
||||
},
|
||||
],
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -4,9 +4,11 @@
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.putSettings({
|
||||
index: "my-index-000001",
|
||||
index: ".reindexed-v9-ml-anomalies-custom-example",
|
||||
settings: {
|
||||
"index.blocks.read_only_allow_delete": null,
|
||||
index: {
|
||||
number_of_replicas: 0,
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
12
docs/doc_examples/89f547649895176c246bb8c41313ff21.asciidoc
Normal file
12
docs/doc_examples/89f547649895176c246bb8c41313ff21.asciidoc
Normal file
@ -0,0 +1,12 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.esql.query({
|
||||
query:
|
||||
'\nFROM library\n| EVAL year = DATE_EXTRACT("year", release_date)\n| WHERE page_count > ? AND match(author, ?, {"minimum_should_match": ?})\n| LIMIT 5\n',
|
||||
params: [300, "Frank Herbert", 2],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -9,7 +9,6 @@ const response = await client.indices.create({
|
||||
properties: {
|
||||
content: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-elser-endpoint",
|
||||
},
|
||||
},
|
||||
},
|
||||
@ -3,8 +3,8 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.unfreeze({
|
||||
index: "my-index-000001",
|
||||
const response = await client.indices.getAlias({
|
||||
index: ".ml-anomalies-custom-example",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
39
docs/doc_examples/8c639d3eef5c2de29e12bd9c6a42d3d4.asciidoc
Normal file
39
docs/doc_examples/8c639d3eef5c2de29e12bd9c6a42d3d4.asciidoc
Normal file
@ -0,0 +1,39 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "kibana_sample_data_ecommerce",
|
||||
size: 0,
|
||||
aggs: {
|
||||
categories: {
|
||||
terms: {
|
||||
field: "category.keyword",
|
||||
size: 5,
|
||||
order: {
|
||||
total_revenue: "desc",
|
||||
},
|
||||
},
|
||||
aggs: {
|
||||
total_revenue: {
|
||||
sum: {
|
||||
field: "taxful_total_price",
|
||||
},
|
||||
},
|
||||
avg_order_value: {
|
||||
avg: {
|
||||
field: "taxful_total_price",
|
||||
},
|
||||
},
|
||||
total_items: {
|
||||
sum: {
|
||||
field: "total_quantity",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
17
docs/doc_examples/91e106a2affbc8df32cd940684a779ed.asciidoc
Normal file
17
docs/doc_examples/91e106a2affbc8df32cd940684a779ed.asciidoc
Normal file
@ -0,0 +1,17 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.transport.request({
|
||||
method: "PUT",
|
||||
path: "/_ingest/ip_location/database/my-database-1",
|
||||
body: {
|
||||
name: "GeoIP2-Domain",
|
||||
maxmind: {
|
||||
account_id: "1234567",
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
42
docs/doc_examples/9250ac57ec81d5192e8ad4c462438489.asciidoc
Normal file
42
docs/doc_examples/9250ac57ec81d5192e8ad4c462438489.asciidoc
Normal file
@ -0,0 +1,42 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.bulk({
|
||||
index: "jinaai-index",
|
||||
operations: [
|
||||
{
|
||||
index: {
|
||||
_index: "jinaai-index",
|
||||
_id: "1",
|
||||
},
|
||||
},
|
||||
{
|
||||
content:
|
||||
"Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades.",
|
||||
},
|
||||
{
|
||||
index: {
|
||||
_index: "jinaai-index",
|
||||
_id: "2",
|
||||
},
|
||||
},
|
||||
{
|
||||
content:
|
||||
"She spends months at a time diving in remote locations, meticulously documenting the intricate relationships between various marine species. ",
|
||||
},
|
||||
{
|
||||
index: {
|
||||
_index: "jinaai-index",
|
||||
_id: "3",
|
||||
},
|
||||
},
|
||||
{
|
||||
content:
|
||||
"Her dedication to preserving these delicate underwater environments has inspired a new generation of conservationists.",
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
13
docs/doc_examples/9313f534e1aa266cde7d4af74665497f.asciidoc
Normal file
13
docs/doc_examples/9313f534e1aa266cde7d4af74665497f.asciidoc
Normal file
@ -0,0 +1,13 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.connector.put({
|
||||
connector_id: "my-{service-name-stub}-connector",
|
||||
index_name: "my-elasticsearch-index",
|
||||
name: "Content synced from {service-name}",
|
||||
service_type: "{service-name-stub}",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
32
docs/doc_examples/931817b168e055ecf738785c721125dd.asciidoc
Normal file
32
docs/doc_examples/931817b168e055ecf738785c721125dd.asciidoc
Normal file
@ -0,0 +1,32 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.ingest.putPipeline({
|
||||
id: "query_helper_pipeline",
|
||||
processors: [
|
||||
{
|
||||
script: {
|
||||
source:
|
||||
"ctx.prompt = 'Please generate an elasticsearch search query on index `articles_index` for the following natural language query. Dates are in the field `@timestamp`, document types are in the field `type` (options are `news`, `publication`), categories in the field `category` and can be multiple (options are `medicine`, `pharmaceuticals`, `technology`), and document names are in the field `title` which should use a fuzzy match. Ignore fields which cannot be determined from the natural language query context: ' + ctx.content",
|
||||
},
|
||||
},
|
||||
{
|
||||
inference: {
|
||||
model_id: "openai_chat_completions",
|
||||
input_output: {
|
||||
input_field: "prompt",
|
||||
output_field: "query",
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
remove: {
|
||||
field: "prompt",
|
||||
},
|
||||
},
|
||||
],
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
89
docs/doc_examples/948418e0ef1b7e7cfee2f11be715d7d2.asciidoc
Normal file
89
docs/doc_examples/948418e0ef1b7e7cfee2f11be715d7d2.asciidoc
Normal file
@ -0,0 +1,89 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "retrievers_example_nested",
|
||||
settings: {
|
||||
number_of_shards: 1,
|
||||
},
|
||||
mappings: {
|
||||
properties: {
|
||||
nested_field: {
|
||||
type: "nested",
|
||||
properties: {
|
||||
paragraph_id: {
|
||||
type: "keyword",
|
||||
},
|
||||
nested_vector: {
|
||||
type: "dense_vector",
|
||||
dims: 3,
|
||||
similarity: "l2_norm",
|
||||
index: true,
|
||||
index_options: {
|
||||
type: "flat",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
topic: {
|
||||
type: "keyword",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
|
||||
const response1 = await client.index({
|
||||
index: "retrievers_example_nested",
|
||||
id: 1,
|
||||
document: {
|
||||
nested_field: [
|
||||
{
|
||||
paragraph_id: "1a",
|
||||
nested_vector: [-1.12, -0.59, 0.78],
|
||||
},
|
||||
{
|
||||
paragraph_id: "1b",
|
||||
nested_vector: [-0.12, 1.56, 0.42],
|
||||
},
|
||||
{
|
||||
paragraph_id: "1c",
|
||||
nested_vector: [1, -1, 0],
|
||||
},
|
||||
],
|
||||
topic: ["ai"],
|
||||
},
|
||||
});
|
||||
console.log(response1);
|
||||
|
||||
const response2 = await client.index({
|
||||
index: "retrievers_example_nested",
|
||||
id: 2,
|
||||
document: {
|
||||
nested_field: [
|
||||
{
|
||||
paragraph_id: "2a",
|
||||
nested_vector: [0.23, 1.24, 0.65],
|
||||
},
|
||||
],
|
||||
topic: ["information_retrieval"],
|
||||
},
|
||||
});
|
||||
console.log(response2);
|
||||
|
||||
const response3 = await client.index({
|
||||
index: "retrievers_example_nested",
|
||||
id: 3,
|
||||
document: {
|
||||
topic: ["ai"],
|
||||
},
|
||||
});
|
||||
console.log(response3);
|
||||
|
||||
const response4 = await client.indices.refresh({
|
||||
index: "retrievers_example_nested",
|
||||
});
|
||||
console.log(response4);
|
||||
----
|
||||
18
docs/doc_examples/96e88611f99e6834bd64b58dc8a282c1.asciidoc
Normal file
18
docs/doc_examples/96e88611f99e6834bd64b58dc8a282c1.asciidoc
Normal file
@ -0,0 +1,18 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.indices.create({
|
||||
index: "my-index-000002",
|
||||
mappings: {
|
||||
properties: {
|
||||
inference_field: {
|
||||
type: "semantic_text",
|
||||
inference_id: "my-openai-endpoint",
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
37
docs/doc_examples/97c6c07f46f4177f0565a04bc50924a3.asciidoc
Normal file
37
docs/doc_examples/97c6c07f46f4177f0565a04bc50924a3.asciidoc
Normal file
@ -0,0 +1,37 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.search({
|
||||
index: "retrievers_example",
|
||||
retriever: {
|
||||
rrf: {
|
||||
retrievers: [
|
||||
{
|
||||
standard: {
|
||||
query: {
|
||||
query_string: {
|
||||
query: "(information retrieval) OR (artificial intelligence)",
|
||||
default_field: "text",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
knn: {
|
||||
field: "vector",
|
||||
query_vector: [0.23, 0.67, 0.89],
|
||||
k: 3,
|
||||
num_candidates: 5,
|
||||
},
|
||||
},
|
||||
],
|
||||
rank_window_size: 10,
|
||||
rank_constant: 1,
|
||||
},
|
||||
},
|
||||
_source: false,
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
11
docs/doc_examples/99fb82d49ac477e6a9dfdd71f9465374.asciidoc
Normal file
11
docs/doc_examples/99fb82d49ac477e6a9dfdd71f9465374.asciidoc
Normal file
@ -0,0 +1,11 @@
|
||||
// This file is autogenerated, DO NOT EDIT
|
||||
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.transport.request({
|
||||
method: "DELETE",
|
||||
path: "/_ingest/ip_location/database/example-database-id",
|
||||
});
|
||||
console.log(response);
|
||||
----
|
||||
@ -3,9 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.searchApplication.postBehavioralAnalyticsEvent({
|
||||
collection_name: "my_analytics_collection",
|
||||
event_type: "search_click",
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_application/analytics/my_analytics_collection/event/search_click",
|
||||
body: {
|
||||
session: {
|
||||
id: "1797ca95-91c9-4e2e-b1bd-9c38e6f386a9",
|
||||
|
||||
@ -3,7 +3,9 @@
|
||||
|
||||
[source, js]
|
||||
----
|
||||
const response = await client.security.oidcAuthenticate({
|
||||
const response = await client.transport.request({
|
||||
method: "POST",
|
||||
path: "/_security/oidc/authenticate",
|
||||
body: {
|
||||
redirect_uri:
|
||||
"https://oidc-kibana.elastic.co:5603/api/security/oidc/callback?code=jtI3Ntt8v3_XvcLzCFGq&state=4dbrihtIAt3wBTwo6DxK-vdk-sSyDBV8Yf0AjdkdT5I",
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user