Compare commits

...

27 Commits
8.18 ... 8.17

Author SHA1 Message Date
42a6fe0f3b Auto-generated API code (#2852) 2025-05-27 15:14:45 +00:00
cdebf1aebf Auto-generated API code (#2831) 2025-05-19 19:05:40 +00:00
5f7596dd2c Auto-generated API code (#2816) 2025-05-05 11:16:28 -05:00
d97d8fd35c Auto-generated API code (#2807) 2025-04-28 10:41:16 -05:00
84731411ad Auto-generated API code (#2711) 2025-04-07 14:31:27 -05:00
aa9249bf25 Auto-generated API code (#2688) 2025-03-31 11:11:34 -05:00
c68be6f562 Auto-generated API code (#2679) 2025-03-24 12:20:43 -05:00
b50c2c2e5b Auto-generated API code (#2656) 2025-03-20 01:02:25 +00:00
586d91effb Auto-generated API code (#2643) 2025-03-07 15:05:10 -06:00
469c853a10 Bump to 8.17.1 (#2632) 2025-02-24 13:37:19 -06:00
01f4cf9ba7 Auto-generated API code (#2626) 2025-02-24 10:55:36 -06:00
85dea32310 Auto-generated API code (#2619) 2025-02-18 10:39:36 -06:00
528dd6b24a Auto-generated API code (#2608) 2025-02-10 13:07:52 -06:00
d540d7fdb2 Report correct transport connection type in telemetry (#2599) (#2603)
Fixes #2324

(cherry picked from commit 172180cb21)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2025-02-03 13:37:59 -06:00
07f75a4d9d Auto-generated API code (#2596) 2025-02-03 12:52:56 -06:00
4e6cbf96aa Auto-generated API code (#2579) 2025-01-28 11:52:01 -06:00
aa7d327d20 Auto-generated code for 8.17 (#2567) 2025-01-13 10:07:15 -06:00
6cdb08757d Auto-generated code for 8.17 (#2550) 2025-01-07 12:52:21 -06:00
48f369fe82 Update dependency @elastic/request-converter to v8.17.0 (#2555) (#2559)
Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
(cherry picked from commit e688f36396)

Co-authored-by: elastic-renovate-prod[bot] <174716857+elastic-renovate-prod[bot]@users.noreply.github.com>
2025-01-06 12:44:35 -06:00
abcdd08b89 Backport #2543 (#2544) 2024-12-12 11:46:51 -06:00
b3e523ad57 Auto-generated code for 8.17 (#2528) 2024-12-10 17:41:02 +00:00
dd0a304641 [Backport 8.17] Checkout correct branch of generator (#2532)
(cherry picked from commit ed3cace127)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-12-10 10:32:53 -06:00
00675bf260 [Backport 8.17] Codegen for 8.x clients should use the 8.x generator branch (#2518)
(cherry picked from commit 15b9ee2f06)

Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-12-05 10:39:14 -06:00
75b7b07b3d Auto-generated code for 8.17 (#2503) 2024-12-02 12:11:27 -06:00
cc9d8569b2 [Backport 8.17] Update changelog to include 8.16.2 and 8.15.3 (#2496)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-11-21 10:42:49 -06:00
e07b8ebf68 [Backport 8.17] Ignore tap artifacts (#2493)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-11-21 10:22:58 -06:00
e18ba8b7af Add docstrings for Client class and related properties (#2484) (#2486)
Co-authored-by: Josh Mock <joshua.mock@elastic.co>
2024-11-21 10:20:22 -06:00
241 changed files with 11082 additions and 3102 deletions

View File

@ -5,3 +5,4 @@ elasticsearch
.git
lib
junit-output
.tap

12
.github/make.sh vendored
View File

@ -150,7 +150,7 @@ if [[ -z "${BUILDKITE+x}" ]] && [[ -z "${CI+x}" ]] && [[ -z "${GITHUB_ACTIONS+x}
-u "$(id -u):$(id -g)" \
--volume "$repo:/usr/src/elasticsearch-js" \
--volume /usr/src/elasticsearch-js/node_modules \
--volume "$(realpath $repo/../elastic-client-generator-js):/usr/src/elastic-client-generator-js" \
--volume "$(realpath "$repo/../elastic-client-generator-js"):/usr/src/elastic-client-generator-js" \
--env "WORKFLOW=$WORKFLOW" \
--name make-elasticsearch-js \
--rm \
@ -159,6 +159,14 @@ if [[ -z "${BUILDKITE+x}" ]] && [[ -z "${CI+x}" ]] && [[ -z "${GITHUB_ACTIONS+x}
node .buildkite/make.mjs --task $TASK ${TASK_ARGS[*]}"
else
echo -e "\033[34;1mINFO: Running in CI mode"
# determine branch to clone
GENERATOR_BRANCH="main"
if [[ "$VERSION" == 8.* ]]; then
GENERATOR_BRANCH="8.x"
fi
echo -e "\033[34;1mINFO: Generator branch: $GENERATOR_BRANCH"
docker run \
--volume "$repo:/usr/src/elasticsearch-js" \
--volume /usr/src/elasticsearch-js/node_modules \
@ -168,7 +176,7 @@ else
--rm \
$product \
/bin/bash -c "cd /usr/src && \
git clone https://$CLIENTS_GITHUB_TOKEN@github.com/elastic/elastic-client-generator-js.git && \
git clone --branch $GENERATOR_BRANCH https://$CLIENTS_GITHUB_TOKEN@github.com/elastic/elastic-client-generator-js.git && \
mkdir -p /usr/src/elastic-client-generator-js/output && \
cd /usr/src/elasticsearch-js && \
node .buildkite/make.mjs --task $TASK ${TASK_ARGS[*]}"

1
.gitignore vendored
View File

@ -67,3 +67,4 @@ junit-output
bun.lockb
test-results
processinfo
.tap

View File

@ -73,3 +73,4 @@ CONTRIBUTING.md
src
bun.lockb
.tap

View File

@ -1,6 +1,77 @@
[[changelog-client]]
== Release notes
[discrete]
=== 8.17.1
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.17`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
===== Report correct transport connection type in telemetry
The client's telemetry reporting mechanism was incorrectly reporting all traffic as using `HttpConnection` when the default is `UndiciConnection`. https://github.com/elastic/elasticsearch-js/issues/2324[#2324]
[discrete]
=== 8.17.0
[discrete]
==== Features
[discrete]
===== Support for Elasticsearch `v8.17`
You can find all the API changes
https://www.elastic.co/guide/en/elasticsearch/reference/8.17/release-notes-8.17.0.html[here].
[discrete]
=== 8.16.4
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.16`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
===== Report correct transport connection type in telemetry
The client's telemetry reporting mechanism was incorrectly reporting all traffic as using `HttpConnection` when the default is `UndiciConnection`. https://github.com/elastic/elasticsearch-js/issues/2324[#2324]
[discrete]
=== 8.16.3
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.16`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
=== 8.16.2
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.16`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
===== Drop testing artifacts from npm package
Tap, the unit testing tool used by this project, was recently upgraded and started writing to a `.tap` directory. Since tests are run prior to an `npm publish` in CI, this directory was being included in the published package and bloating its size.
[discrete]
=== 8.16.1
@ -37,11 +108,27 @@ The ES|QL helper can now return results as an Apache Arrow `Table` or `RecordBat
The client's `disablePrototypePoisoningProtection` option was set to `true` by default, but when it was set to any other value it was ignored, making it impossible to enable prototype poisoning protection without providing a custom serializer implementation.
[discrete]
=== 8.15.3
[discrete]
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.15`
Updated TypeScript types based on fixes and improvements to the Elasticsearch specification.
[discrete]
===== Drop testing artifacts from npm package
Tap, the unit testing tool, was recently upgraded and started writing to a `.tap` directory. Since tests are run prior to an `npm publish` in CI, this directory was being included in the published package and bloating its size.
[discrete]
=== 8.15.2
[discrete]
==== Features
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.15`
@ -52,7 +139,7 @@ Updated TypeScript types based on fixes and improvements to the Elasticsearch sp
=== 8.15.1
[discrete]
==== Features
==== Fixes
[discrete]
===== Improved support for Elasticsearch `v8.15`

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.getDataStream({
name: "my-data-stream",
filter_path: "data_streams.indices.index_name",
});
console.log(response);
----

View File

@ -0,0 +1,46 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
range: {
year: {
gt: 2023,
},
},
},
},
},
{
standard: {
query: {
term: {
topic: "elastic",
},
},
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
aggs: {
topics: {
terms: {
field: "topic",
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "rerank",
inference_id: "my-rerank-model",
inference_config: {
service: "cohere",
service_settings: {
model_id: "rerank-english-v3.0",
api_key: "{{COHERE_API_KEY}}",
},
},
});
console.log(response);
----

View File

@ -3,9 +3,8 @@
[source, js]
----
const response = await client.cluster.getSettings({
flat_settings: "true",
filter_path: "transient",
const response = await client.indices.getMapping({
index: "kibana_sample_data_ecommerce",
});
console.log(response);
----

View File

@ -11,6 +11,8 @@ const response = await client.indices.putSettings({
"index.indexing.slowlog.threshold.index.debug": "2s",
"index.indexing.slowlog.threshold.index.trace": "500ms",
"index.indexing.slowlog.source": "1000",
"index.indexing.slowlog.reformat": true,
"index.indexing.slowlog.include.user": true,
},
});
console.log(response);

View File

@ -0,0 +1,42 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-bit",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
element_type: "bit",
},
},
},
});
console.log(response);
const response1 = await client.bulk({
index: "my-rank-vectors-bit",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
my_vector: [127, -127, 0, 1, 42],
},
{
index: {
_id: "2",
},
},
{
my_vector: "8100012a7f",
},
],
});
console.log(response1);
----

View File

@ -0,0 +1,49 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example_nested",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
nested: {
path: "nested_field",
inner_hits: {
name: "nested_vector",
_source: false,
fields: ["nested_field.paragraph_id"],
},
query: {
knn: {
field: "nested_field.nested_vector",
query_vector: [1, 0, 0.5],
k: 10,
},
},
},
},
},
},
{
standard: {
query: {
term: {
topic: "ai",
},
},
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: ["topic"],
});
console.log(response);
----

View File

@ -3,8 +3,12 @@
[source, js]
----
const response = await client.esql.asyncQuery({
format: "json",
const response = await client.transport.request({
method: "POST",
path: "/_query/async",
querystring: {
format: "json",
},
body: {
query:
"\n FROM my-index-000001,cluster_one:my-index-000001,cluster_two:my-index*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",

View File

@ -10,7 +10,7 @@ const response = await client.ingest.putPipeline({
{
attachment: {
field: "data",
remove_binary: false,
remove_binary: true,
},
},
],

View File

@ -0,0 +1,57 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
term: {
topic: "elastic",
},
},
},
},
{
rrf: {
retrievers: [
{
standard: {
query: {
query_string: {
query:
"(information retrieval) OR (artificial intelligence)",
default_field: "text",
},
},
},
},
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
size: 1,
explain: true,
});
console.log(response);
----

View File

@ -3,8 +3,9 @@
[source, js]
----
const response = await client.searchApplication.renderQuery({
name: "my-app",
const response = await client.transport.request({
method: "POST",
path: "/_application/search_application/my-app/_render_query",
body: {
params: {
query_string: "my first query",

View File

@ -1,15 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.cluster.putSettings({
persistent: {
"cluster.routing.allocation.disk.watermark.low": "100gb",
"cluster.routing.allocation.disk.watermark.high": "50gb",
"cluster.routing.allocation.disk.watermark.flood_stage": "10gb",
"cluster.info.update.interval": "1m",
},
});
console.log(response);
----

View File

@ -0,0 +1,15 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.putSettings({
index: ".reindexed-v9-ml-anomalies-custom-example",
settings: {
index: {
number_of_replicas: "<original_number_of_replicas>",
},
},
});
console.log(response);
----

View File

@ -0,0 +1,20 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "POST",
path: "/_inference/chat_completion/openai-completion/_stream",
body: {
model: "gpt-4o",
messages: [
{
role: "user",
content: "What is Elastic?",
},
],
},
});
console.log(response);
----

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.addBlock({
index: ".ml-anomalies-custom-example",
block: "read_only",
});
console.log(response);
----

View File

@ -3,11 +3,13 @@
[source, js]
----
const response = await client.inference.inference({
const response = await client.inference.put({
task_type: "my-inference-endpoint",
inference_id: "_update",
service_settings: {
api_key: "<API_KEY>",
inference_config: {
service_settings: {
api_key: "<API_KEY>",
},
},
});
console.log(response);

View File

@ -11,7 +11,7 @@ const response = await client.searchApplication.put({
script: {
lang: "mustache",
source:
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n \n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "highlight": {\n "fields": {\n "title": { "fragment_size": 0 },\n "plot": { "fragment_size": 200 }\n }\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "highlight": {\n "fields": {\n "title": { "fragment_size": 0 },\n "plot": { "fragment_size": 200 }\n }\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
params: {
query: "",
_es_filters: {},

View File

@ -16,7 +16,7 @@ const response = await client.search({
},
},
field: "text",
inference_id: "my-cohere-rerank-model",
inference_id: "elastic-rerank",
inference_text: "How often does the moon hide the sun?",
rank_window_size: 100,
min_score: 0.5,

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.simulate.ingest({
const response = await client.transport.request({
method: "POST",
path: "/_ingest/_simulate",
body: {
docs: [
{

View File

@ -0,0 +1,19 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.security.queryRole({
query: {
bool: {
must_not: {
term: {
"metadata._reserved": true,
},
},
},
},
sort: ["name"],
});
console.log(response);
----

View File

@ -3,8 +3,8 @@
[source, js]
----
const response = await client.security.queryRole({
sort: ["name"],
const response = await client.indices.rollover({
alias: "datastream",
});
console.log(response);
----

View File

@ -0,0 +1,67 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-rank-vectors-bit",
mappings: {
properties: {
my_vector: {
type: "rank_vectors",
element_type: "bit",
},
},
},
});
console.log(response);
const response1 = await client.bulk({
index: "my-rank-vectors-bit",
refresh: "true",
operations: [
{
index: {
_id: "1",
},
},
{
my_vector: [127, -127, 0, 1, 42],
},
{
index: {
_id: "2",
},
},
{
my_vector: "8100012a7f",
},
],
});
console.log(response1);
const response2 = await client.search({
index: "my-rank-vectors-bit",
query: {
script_score: {
query: {
match_all: {},
},
script: {
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
params: {
query_vector: [
[
0.35, 0.77, 0.95, 0.15, 0.11, 0.08, 0.58, 0.06, 0.44, 0.52, 0.21,
0.62, 0.65, 0.16, 0.64, 0.39, 0.93, 0.06, 0.93, 0.31, 0.92, 0,
0.66, 0.86, 0.92, 0.03, 0.81, 0.31, 0.2, 0.92, 0.95, 0.64, 0.19,
0.26, 0.77, 0.64, 0.78, 0.32, 0.97, 0.84,
],
],
},
},
},
},
});
console.log(response2);
----

View File

@ -1,28 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.esql.query({
format: "txt",
query:
"\n FROM library\n | SORT page_count DESC\n | KEEP name, author\n | LOOKUP era ON author\n | LIMIT 5\n ",
tables: {
era: {
author: {
keyword: [
"Frank Herbert",
"Peter F. Hamilton",
"Vernor Vinge",
"Alastair Reynolds",
"James S.A. Corey",
],
},
era: {
keyword: ["The New Wave", "Diamond", "Diamond", "Diamond", "Hadron"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.addBlock({
index: ".ml-anomalies-custom-example",
block: "write",
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.oidcLogout({
const response = await client.transport.request({
method: "POST",
path: "/_security/oidc/logout",
body: {
token:
"dGhpcyBpcyBub3QgYSByZWFsIHRva2VuIGJ1dCBpdCBpcyBvbmx5IHRlc3QgZGF0YS4gZG8gbm90IHRyeSB0byByZWFkIHRva2VuIQ==",

View File

@ -0,0 +1,26 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-rank-vectors-float",
query: {
script_score: {
query: {
match_all: {},
},
script: {
source: "maxSimDotProduct(params.query_vector, 'my_vector')",
params: {
query_vector: [
[0.5, 10, 6],
[-0.5, 10, 10],
],
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,35 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ingest.putPipeline({
id: "attachment",
description: "Extract attachment information including original binary",
processors: [
{
attachment: {
field: "data",
remove_binary: false,
},
},
],
});
console.log(response);
const response1 = await client.index({
index: "my-index-000001",
id: "my_id",
pipeline: "attachment",
document: {
data: "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0=",
},
});
console.log(response1);
const response2 = await client.get({
index: "my-index-000001",
id: "my_id",
});
console.log(response2);
----

View File

@ -0,0 +1,24 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "test-index",
query: {
match: {
my_field: "Which country is Paris in?",
},
},
highlight: {
fields: {
my_field: {
type: "semantic",
number_of_fragments: 2,
order: "score",
},
},
},
});
console.log(response);
----

View File

@ -3,10 +3,12 @@
[source, js]
----
const response = await client.esql.asyncQueryGet({
id: "FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
wait_for_completion_timeout: "30s",
body: null,
const response = await client.transport.request({
method: "GET",
path: "/_query/async/FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE&#x3D;",
querystring: {
wait_for_completion_timeout: "30s",
},
});
console.log(response);
----

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "test-index",
mappings: {
properties: {
source_field: {
type: "text",
fields: {
infer_field: {
type: "semantic_text",
inference_id: ".elser-2-elasticsearch",
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "rerank",
inference_id: "my-elastic-rerank",
inference_config: {
service: "elasticsearch",
service_settings: {
model_id: ".rerank-v1",
num_threads: 1,
adaptive_allocations: {
enabled: true,
min_number_of_allocations: 1,
max_number_of_allocations: 4,
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,28 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-index-*",
query: {
bool: {
must: [
{
match: {
"user.id": "kimchy",
},
},
],
must_not: [
{
terms: {
_index: ["my-index-01"],
},
},
],
},
},
});
console.log(response);
----

View File

@ -0,0 +1,31 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ilm.putLifecycle({
name: "my_policy",
policy: {
phases: {
hot: {
actions: {
rollover: {
max_primary_shard_size: "50gb",
},
searchable_snapshot: {
snapshot_repository: "backing_repo",
replicate_for: "14d",
},
},
},
delete: {
min_age: "28d",
actions: {
delete: {},
},
},
},
},
});
console.log(response);
----

View File

@ -14,6 +14,7 @@ const response = await client.indices.putSettings({
"index.search.slowlog.threshold.fetch.info": "800ms",
"index.search.slowlog.threshold.fetch.debug": "500ms",
"index.search.slowlog.threshold.fetch.trace": "200ms",
"index.search.slowlog.include.user": true,
},
});
console.log(response);

View File

@ -0,0 +1,70 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "movies",
size: 10,
retriever: {
rescorer: {
rescore: {
window_size: 50,
query: {
rescore_query: {
script_score: {
query: {
match_all: {},
},
script: {
source:
"cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
params: {
queryVector: [-0.5, 90, -10, 14.8, -156],
},
},
},
},
},
},
retriever: {
rrf: {
rank_window_size: 100,
retrievers: [
{
standard: {
query: {
sparse_vector: {
field: "plot_embedding",
inference_id: "my-elser-model",
query: "films that explore psychological depths",
},
},
},
},
{
standard: {
query: {
multi_match: {
query: "crime",
fields: ["plot", "title"],
},
},
},
},
{
knn: {
field: "vector",
query_vector: [10, 22, 77],
k: 10,
num_candidates: 10,
},
},
],
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,23 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-index",
settings: {
index: {
number_of_shards: 3,
"blocks.write": true,
},
},
mappings: {
properties: {
field1: {
type: "text",
},
},
},
});
console.log(response);
----

View File

@ -1,23 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.bulk({
index: "test-index",
operations: [
{
update: {
_id: "1",
},
},
{
doc: {
infer_field: "updated inference field",
source_field: "updated source field",
},
},
],
});
console.log(response);
----

View File

@ -0,0 +1,19 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: ".ml-anomalies-custom-example",
size: 0,
aggs: {
job_ids: {
terms: {
field: "job_id",
size: 100,
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,61 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
linear: {
retrievers: [
{
retriever: {
standard: {
query: {
function_score: {
query: {
term: {
topic: "ai",
},
},
functions: [
{
script_score: {
script: {
source: "doc['timestamp'].value.millis",
},
},
},
],
boost_mode: "replace",
},
},
sort: {
timestamp: {
order: "asc",
},
},
},
},
weight: 2,
normalizer: "minmax",
},
{
retriever: {
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
weight: 1.5,
},
],
rank_window_size: 10,
},
},
_source: false,
});
console.log(response);
----

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.updateAliases({
actions: [
{
remove_index: {
index: "my-index-2099.05.06-000001",
},
},
],
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.esql.asyncQuery({
const response = await client.transport.request({
method: "POST",
path: "/_query/async",
body: {
query:
"\n FROM library\n | EVAL year = DATE_TRUNC(1 YEARS, release_date)\n | STATS MAX(page_count) BY year\n | SORT year\n | LIMIT 5\n ",

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
order_stats: {
stats: {
field: "taxful_total_price",
},
},
},
});
console.log(response);
----

View File

@ -3,9 +3,9 @@
[source, js]
----
const response = await client.esql.asyncQueryGet({
id: "FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
body: null,
const response = await client.transport.request({
method: "GET",
path: "/_query/async/FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM&#x3D;",
});
console.log(response);
----

View File

@ -4,16 +4,12 @@
[source, js]
----
const response = await client.indices.create({
index: "semantic-embeddings",
index: "jinaai-index",
mappings: {
properties: {
semantic_text: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
content: {
type: "text",
copy_to: "semantic_text",
type: "semantic_text",
inference_id: "jinaai-embeddings",
},
},
},

View File

@ -0,0 +1,47 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "POST",
path: "/_inference/chat_completion/openai-completion/_stream",
body: {
messages: [
{
role: "user",
content: [
{
type: "text",
text: "What's the price of a scarf?",
},
],
},
],
tools: [
{
type: "function",
function: {
name: "get_current_price",
description: "Get the current price of a item",
parameters: {
type: "object",
properties: {
item: {
id: "123",
},
},
},
},
},
],
tool_choice: {
type: "function",
function: {
name: "get_current_price",
},
},
},
});
console.log(response);
----

View File

@ -10,7 +10,8 @@ const response = await client.inference.put({
service: "openai",
service_settings: {
api_key: "<api_key>",
model_id: "text-embedding-ada-002",
model_id: "text-embedding-3-small",
dimensions: 128,
},
},
});

View File

@ -3,9 +3,9 @@
[source, js]
----
const response = await client.inference.streamInference({
task_type: "completion",
inference_id: "openai-completion",
const response = await client.transport.request({
method: "POST",
path: "/_inference/completion/openai-completion/_stream",
body: {
input: "What is Elastic?",
},

View File

@ -0,0 +1,17 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "elser-model-eis",
inference_config: {
service: "elastic",
service_settings: {
model_name: "elser",
},
},
});
console.log(response);
----

View File

@ -8,11 +8,6 @@ const response = await client.search({
query: {
bool: {
must: [
{
term: {
"category.keyword": "Main Course",
},
},
{
term: {
tags: "vegetarian",
@ -27,6 +22,11 @@ const response = await client.search({
},
],
should: [
{
term: {
category: "Main Course",
},
},
{
multi_match: {
query: "curry spicy",

View File

@ -3,15 +3,18 @@
[source, js]
----
const response = await client.knnSearch({
index: "my-index",
const response = await client.search({
index: "image-index",
knn: {
field: "image_vector",
query_vector: [0.3, 0.1, 1.2],
field: "image-vector",
query_vector: [-5, 9, -12],
k: 10,
num_candidates: 100,
rescore_vector: {
oversample: 2,
},
},
_source: ["name", "file_type"],
fields: ["title", "file-type"],
});
console.log(response);
----

View File

@ -5,7 +5,7 @@
----
const response = await client.cluster.putSettings({
persistent: {
"cluster.routing.allocation.disk.watermark.low": "30gb",
"migrate.data_stream_reindex_max_request_per_second": 10000,
},
});
console.log(response);

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ingest.simulate({
id: "query_helper_pipeline",
docs: [
{
_source: {
content:
"artificial intelligence in medicine articles published in the last 12 months",
},
},
],
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.oidcPrepareAuthentication({
const response = await client.transport.request({
method: "POST",
path: "/_security/oidc/prepare",
body: {
realm: "oidc1",
state: "lGYK0EcSLjqH6pkT5EVZjC6eIW5YCGgywj2sxROO",

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "jinaai-index",
query: {
semantic: {
field: "content",
query: "who inspired taking care of the sea?",
},
},
});
console.log(response);
----

View File

@ -0,0 +1,10 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.getSettings({
index: ".reindexed-v9-ml-anomalies-custom-example",
});
console.log(response);
----

View File

@ -3,8 +3,12 @@
[source, js]
----
const response = await client.esql.asyncQuery({
format: "json",
const response = await client.transport.request({
method: "POST",
path: "/_query/async",
querystring: {
format: "json",
},
body: {
query:
"\n FROM cluster_one:my-index*,cluster_two:logs*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",

View File

@ -9,7 +9,6 @@ const response = await client.indices.create({
properties: {
inference_field: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
},
},

View File

@ -45,7 +45,7 @@ console.log(response);
const response1 = await client.indices.putIndexTemplate({
name: 2,
index_patterns: ["k8s*"],
index_patterns: ["k9s*"],
composed_of: ["destination_template"],
data_stream: {},
});

View File

@ -4,9 +4,11 @@
[source, js]
----
const response = await client.indices.putSettings({
index: "my-index-000001",
index: "*",
settings: {
"index.search.slowlog.include.user": true,
"index.search.slowlog.threshold.fetch.warn": "30s",
"index.search.slowlog.threshold.query.warn": "30s",
},
});
console.log(response);

View File

@ -11,7 +11,7 @@ const response = await client.searchApplication.put({
script: {
lang: "mustache",
source:
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n \n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
'\n {\n "query": {\n "bool": {\n "must": [\n {{#query}}\n {{/query}}\n ],\n "filter": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n "_source": {\n "includes": ["title", "plot"]\n },\n "aggs": {{#toJson}}_es_aggs{{/toJson}},\n "from": {{from}},\n "size": {{size}},\n "sort": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ',
params: {
query: "",
_es_filters: {},

View File

@ -6,14 +6,15 @@
const response = await client.search({
index: "test-index",
query: {
nested: {
path: "inference_field.inference.chunks",
query: {
sparse_vector: {
field: "inference_field.inference.chunks.embeddings",
inference_id: "my-inference-id",
query: "mountain lake",
},
match: {
my_semantic_field: "Which country is Paris in?",
},
},
highlight: {
fields: {
my_semantic_field: {
number_of_fragments: 2,
order: "score",
},
},
},

View File

@ -0,0 +1,16 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.reindex({
wait_for_completion: "false",
source: {
index: ".ml-anomalies-custom-example",
},
dest: {
index: ".reindexed-v9-ml-anomalies-custom-example",
},
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.bulkUpdateApiKeys({
const response = await client.transport.request({
method: "POST",
path: "/_security/api_key/_bulk_update",
body: {
ids: ["VuaCfGcBCdbkQm-e5aOx", "H3_AhoIBA9hmeQJdg7ij"],
},

View File

@ -12,6 +12,13 @@ const response = await client.search({
fields: ["my_field", "my_field._2gram", "my_field._3gram"],
},
},
highlight: {
fields: {
my_field: {
matched_fields: ["my_field._index_prefix"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,24 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "my-index-000001",
query: {
prefix: {
full_name: {
value: "ki",
},
},
},
highlight: {
fields: {
full_name: {
matched_fields: ["full_name._index_prefix"],
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,33 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_sales: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
},
aggs: {
daily_revenue: {
sum: {
field: "taxful_total_price",
},
},
smoothed_revenue: {
moving_fn: {
buckets_path: "daily_revenue",
window: 3,
script: "MovingFunctions.unweightedAvg(values)",
},
},
},
},
},
});
console.log(response);
----

View File

@ -1,26 +0,0 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "test-index",
query: {
nested: {
path: "inference_field.inference.chunks",
query: {
knn: {
field: "inference_field.inference.chunks.embeddings",
query_vector_builder: {
text_embedding: {
model_id: "my_inference_id",
model_text: "mountain lake",
},
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,44 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
{
text_similarity_reranker: {
retriever: {
standard: {
query: {
term: {
topic: "ai",
},
},
},
},
field: "text",
inference_id: "my-rerank-model",
inference_text:
"Can I use generative AI to identify user intent and improve search relevance?",
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
});
console.log(response);
----

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.textStructure.findMessageStructure({
const response = await client.transport.request({
method: "POST",
path: "/_text_structure/find_message_structure",
body: {
messages: [
"[2024-03-05T10:52:36,256][INFO ][o.a.l.u.VectorUtilPanamaProvider] [laptop] Java vector incubator API enabled; uses preferredBitSize=128",

View File

@ -5,11 +5,8 @@
----
const response = await client.cluster.putSettings({
persistent: {
"cluster.indices.close.enable": false,
"indices.recovery.max_bytes_per_sec": "50mb",
},
transient: {
"*": null,
"cluster.routing.allocation.disk.watermark.low": "90%",
"cluster.routing.allocation.disk.watermark.high": "95%",
},
});
console.log(response);

View File

@ -0,0 +1,46 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
text_similarity_reranker: {
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
query_string: {
query:
"(information retrieval) OR (artificial intelligence)",
default_field: "text",
},
},
},
},
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
field: "text",
inference_id: "my-rerank-model",
inference_text:
"What are the state of the art applications of AI in information retrieval?",
},
},
_source: false,
});
console.log(response);
----

View File

@ -0,0 +1,35 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
query: {
intervals: {
my_text: {
all_of: {
ordered: false,
max_gaps: 1,
intervals: [
{
match: {
query: "my favorite food",
max_gaps: 0,
ordered: true,
},
},
{
match: {
query: "cold porridge",
max_gaps: 4,
ordered: true,
},
},
],
},
},
},
},
});
console.log(response);
----

View File

@ -4,17 +4,18 @@
[source, js]
----
const response = await client.inference.put({
task_type: "sparse_embedding",
inference_id: "my-elser-endpoint",
task_type: "rerank",
inference_id: "my-elastic-rerank",
inference_config: {
service: "elser",
service: "elasticsearch",
service_settings: {
model_id: ".rerank-v1",
num_threads: 1,
adaptive_allocations: {
enabled: true,
min_number_of_allocations: 3,
min_number_of_allocations: 1,
max_number_of_allocations: 10,
},
num_threads: 1,
},
},
});

View File

@ -4,7 +4,7 @@
[source, js]
----
const response = await client.indices.create({
index: "my-index-000002",
index: "my-index-000003",
mappings: {
properties: {
inference_field: {

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "DELETE",
path: "/_ingest/ip_location/database/my-database-id",
});
console.log(response);
----

View File

@ -7,14 +7,14 @@ const response = await client.indices.create({
index: "test-index",
mappings: {
properties: {
infer_field: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
source_field: {
type: "text",
copy_to: "infer_field",
},
infer_field: {
type: "semantic_text",
inference_id: ".elser-2-elasticsearch",
},
},
},
});

View File

@ -0,0 +1,37 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
daily_sales: {
date_histogram: {
field: "order_date",
calendar_interval: "day",
format: "yyyy-MM-dd",
},
aggs: {
revenue: {
sum: {
field: "taxful_total_price",
},
},
unique_customers: {
cardinality: {
field: "customer_id",
},
},
avg_basket_size: {
avg: {
field: "total_quantity",
},
},
},
},
},
});
console.log(response);
----

View File

@ -12,7 +12,7 @@ const response = await client.ingest.putPipeline({
field: "data",
indexed_chars: 11,
indexed_chars_field: "max_size",
remove_binary: false,
remove_binary: true,
},
},
],

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.bulkUpdateApiKeys({
const response = await client.transport.request({
method: "POST",
path: "/_security/api_key/_bulk_update",
body: {
ids: ["VuaCfGcBCdbkQm-e5aOx", "H3_AhoIBA9hmeQJdg7ij"],
role_descriptors: {

View File

@ -0,0 +1,34 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "POST",
path: "/_inference/chat_completion/openai-completion/_stream",
body: {
messages: [
{
role: "assistant",
content: "Let's find out what the weather is",
tool_calls: [
{
id: "call_KcAjWtAww20AihPHphUh46Gd",
type: "function",
function: {
name: "get_current_weather",
arguments: '{"location":"Boston, MA"}',
},
},
],
},
{
role: "tool",
content: "The weather is cold",
tool_call_id: "call_KcAjWtAww20AihPHphUh46Gd",
},
],
},
});
console.log(response);
----

View File

@ -4,9 +4,11 @@
[source, js]
----
const response = await client.indices.putSettings({
index: "my-index-000001",
index: ".reindexed-v9-ml-anomalies-custom-example",
settings: {
"index.blocks.read_only_allow_delete": null,
index: {
number_of_replicas: 0,
},
},
});
console.log(response);

View File

@ -0,0 +1,12 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.esql.query({
query:
'\nFROM library\n| EVAL year = DATE_EXTRACT("year", release_date)\n| WHERE page_count > ? AND match(author, ?, {"minimum_should_match": ?})\n| LIMIT 5\n',
params: [300, "Frank Herbert", 2],
});
console.log(response);
----

View File

@ -9,7 +9,6 @@ const response = await client.indices.create({
properties: {
content: {
type: "semantic_text",
inference_id: "my-elser-endpoint",
},
},
},

View File

@ -3,8 +3,8 @@
[source, js]
----
const response = await client.indices.unfreeze({
index: "my-index-000001",
const response = await client.indices.getAlias({
index: ".ml-anomalies-custom-example",
});
console.log(response);
----

View File

@ -0,0 +1,39 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "kibana_sample_data_ecommerce",
size: 0,
aggs: {
categories: {
terms: {
field: "category.keyword",
size: 5,
order: {
total_revenue: "desc",
},
},
aggs: {
total_revenue: {
sum: {
field: "taxful_total_price",
},
},
avg_order_value: {
avg: {
field: "taxful_total_price",
},
},
total_items: {
sum: {
field: "total_quantity",
},
},
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,17 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "PUT",
path: "/_ingest/ip_location/database/my-database-1",
body: {
name: "GeoIP2-Domain",
maxmind: {
account_id: "1234567",
},
},
});
console.log(response);
----

View File

@ -0,0 +1,42 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.bulk({
index: "jinaai-index",
operations: [
{
index: {
_index: "jinaai-index",
_id: "1",
},
},
{
content:
"Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades.",
},
{
index: {
_index: "jinaai-index",
_id: "2",
},
},
{
content:
"She spends months at a time diving in remote locations, meticulously documenting the intricate relationships between various marine species. ",
},
{
index: {
_index: "jinaai-index",
_id: "3",
},
},
{
content:
"Her dedication to preserving these delicate underwater environments has inspired a new generation of conservationists.",
},
],
});
console.log(response);
----

View File

@ -0,0 +1,13 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.connector.put({
connector_id: "my-{service-name-stub}-connector",
index_name: "my-elasticsearch-index",
name: "Content synced from {service-name}",
service_type: "{service-name-stub}",
});
console.log(response);
----

View File

@ -0,0 +1,32 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.ingest.putPipeline({
id: "query_helper_pipeline",
processors: [
{
script: {
source:
"ctx.prompt = 'Please generate an elasticsearch search query on index `articles_index` for the following natural language query. Dates are in the field `@timestamp`, document types are in the field `type` (options are `news`, `publication`), categories in the field `category` and can be multiple (options are `medicine`, `pharmaceuticals`, `technology`), and document names are in the field `title` which should use a fuzzy match. Ignore fields which cannot be determined from the natural language query context: ' + ctx.content",
},
},
{
inference: {
model_id: "openai_chat_completions",
input_output: {
input_field: "prompt",
output_field: "query",
},
},
},
{
remove: {
field: "prompt",
},
},
],
});
console.log(response);
----

View File

@ -0,0 +1,89 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "retrievers_example_nested",
settings: {
number_of_shards: 1,
},
mappings: {
properties: {
nested_field: {
type: "nested",
properties: {
paragraph_id: {
type: "keyword",
},
nested_vector: {
type: "dense_vector",
dims: 3,
similarity: "l2_norm",
index: true,
index_options: {
type: "flat",
},
},
},
},
topic: {
type: "keyword",
},
},
},
});
console.log(response);
const response1 = await client.index({
index: "retrievers_example_nested",
id: 1,
document: {
nested_field: [
{
paragraph_id: "1a",
nested_vector: [-1.12, -0.59, 0.78],
},
{
paragraph_id: "1b",
nested_vector: [-0.12, 1.56, 0.42],
},
{
paragraph_id: "1c",
nested_vector: [1, -1, 0],
},
],
topic: ["ai"],
},
});
console.log(response1);
const response2 = await client.index({
index: "retrievers_example_nested",
id: 2,
document: {
nested_field: [
{
paragraph_id: "2a",
nested_vector: [0.23, 1.24, 0.65],
},
],
topic: ["information_retrieval"],
},
});
console.log(response2);
const response3 = await client.index({
index: "retrievers_example_nested",
id: 3,
document: {
topic: ["ai"],
},
});
console.log(response3);
const response4 = await client.indices.refresh({
index: "retrievers_example_nested",
});
console.log(response4);
----

View File

@ -0,0 +1,18 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.indices.create({
index: "my-index-000002",
mappings: {
properties: {
inference_field: {
type: "semantic_text",
inference_id: "my-openai-endpoint",
},
},
},
});
console.log(response);
----

View File

@ -0,0 +1,37 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.search({
index: "retrievers_example",
retriever: {
rrf: {
retrievers: [
{
standard: {
query: {
query_string: {
query: "(information retrieval) OR (artificial intelligence)",
default_field: "text",
},
},
},
},
{
knn: {
field: "vector",
query_vector: [0.23, 0.67, 0.89],
k: 3,
num_candidates: 5,
},
},
],
rank_window_size: 10,
rank_constant: 1,
},
},
_source: false,
});
console.log(response);
----

View File

@ -0,0 +1,11 @@
// This file is autogenerated, DO NOT EDIT
// Use `node scripts/generate-docs-examples.js` to generate the docs examples
[source, js]
----
const response = await client.transport.request({
method: "DELETE",
path: "/_ingest/ip_location/database/example-database-id",
});
console.log(response);
----

View File

@ -3,9 +3,9 @@
[source, js]
----
const response = await client.searchApplication.postBehavioralAnalyticsEvent({
collection_name: "my_analytics_collection",
event_type: "search_click",
const response = await client.transport.request({
method: "POST",
path: "/_application/analytics/my_analytics_collection/event/search_click",
body: {
session: {
id: "1797ca95-91c9-4e2e-b1bd-9c38e6f386a9",

View File

@ -3,7 +3,9 @@
[source, js]
----
const response = await client.security.oidcAuthenticate({
const response = await client.transport.request({
method: "POST",
path: "/_security/oidc/authenticate",
body: {
redirect_uri:
"https://oidc-kibana.elastic.co:5603/api/security/oidc/callback?code=jtI3Ntt8v3_XvcLzCFGq&state=4dbrihtIAt3wBTwo6DxK-vdk-sSyDBV8Yf0AjdkdT5I",

Some files were not shown because too many files have changed in this diff Show More